New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 278-286
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the problem of describing square-free polynomials $f(x)$ of odd degree with periodic expansion of $\sqrt {f(x)}$ into a functional continued fraction in $k((x))$, where $k\subseteq \overline {\mathbb Q}$. We obtain a complete description of such polynomials $f(x)$ that does not depend on the field $k$ and the degree of a polynomial, provided that the degree $U$ of the fundamental $S$-unit of the corresponding hyperelliptic field $k(x)(\sqrt {f(x)})$ either does not exceed $12$ or is even and does not exceed $20$.
@article{TM_2023_320_a10,
author = {V. P. Platonov and M. M. Petrunin},
title = {New {Results} on the {Periodicity} {Problem} for {Continued} {Fractions} of {Elements} of {Hyperelliptic} {Fields}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {278--286},
publisher = {mathdoc},
volume = {320},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2023_320_a10/}
}
TY - JOUR AU - V. P. Platonov AU - M. M. Petrunin TI - New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 278 EP - 286 VL - 320 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2023_320_a10/ LA - ru ID - TM_2023_320_a10 ER -
%0 Journal Article %A V. P. Platonov %A M. M. Petrunin %T New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2023 %P 278-286 %V 320 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2023_320_a10/ %G ru %F TM_2023_320_a10
V. P. Platonov; M. M. Petrunin. New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 278-286. http://geodesic.mathdoc.fr/item/TM_2023_320_a10/