New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 278-286.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of describing square-free polynomials $f(x)$ of odd degree with periodic expansion of $\sqrt {f(x)}$ into a functional continued fraction in $k((x))$, where $k\subseteq \overline {\mathbb Q}$. We obtain a complete description of such polynomials $f(x)$ that does not depend on the field $k$ and the degree of a polynomial, provided that the degree $U$ of the fundamental $S$-unit of the corresponding hyperelliptic field $k(x)(\sqrt {f(x)})$ either does not exceed $12$ or is even and does not exceed $20$.
@article{TM_2023_320_a10,
     author = {V. P. Platonov and M. M. Petrunin},
     title = {New {Results} on the {Periodicity} {Problem} for {Continued} {Fractions} of {Elements} of {Hyperelliptic} {Fields}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {278--286},
     publisher = {mathdoc},
     volume = {320},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2023_320_a10/}
}
TY  - JOUR
AU  - V. P. Platonov
AU  - M. M. Petrunin
TI  - New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 278
EP  - 286
VL  - 320
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2023_320_a10/
LA  - ru
ID  - TM_2023_320_a10
ER  - 
%0 Journal Article
%A V. P. Platonov
%A M. M. Petrunin
%T New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 278-286
%V 320
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2023_320_a10/
%G ru
%F TM_2023_320_a10
V. P. Platonov; M. M. Petrunin. New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 278-286. http://geodesic.mathdoc.fr/item/TM_2023_320_a10/

[1] Abel N.H., “Ueber die Integration der Differential-Formel $\frac {\rho dx}{\sqrt R}$, wenn $R$ und $\rho $ ganze Functionen sind”, J. reine angew. Math., 1 (1826), 185–221 | MR

[2] Kubert D.S., “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. Ser. 3, 33:2 (1976), 193–237 | DOI | MR | Zbl

[3] M. M. Petrunin, “$S$-units and periodicity of square root in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 222–225 | DOI | MR | Zbl

[4] V. P. Platonov, “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russ. Math. Surv., 69:1 (2014), 1–34 | DOI | DOI | MR | Zbl

[5] V. P. Platonov and G. V. Fedorov, “On the problem of periodicity of continued fractions in hyperelliptic fields”, Sb. Math., 209:4 (2018), 519–559 | DOI | DOI | MR | Zbl

[6] V. P. Platonov and G. V. Fedorov, “On the problem of classification of periodic continued fractions in hyperelliptic fields”, Russ. Math. Surv., 75:4 (2020), 785–787 | DOI | DOI | MR | Zbl

[7] V. P. Platonov and M. M. Petrunin, “Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields”, Proc. Steklov Inst. Math., 302 (2018), 336–357 | DOI | DOI | MR | Zbl

[8] V. P. Platonov and M. M. Petrunin, “On the finiteness of the number of expansions into a continued fraction of $\sqrt {f}$ for cubic polynomials over algebraic number fields”, Dokl. Math., 102:3 (2020), 487–492 | DOI | DOI | MR | Zbl

[9] V. P. Platonov, M. M. Petrunin, and Yu. N. Shteinikov, “On the finiteness of the number of elliptic fields with given degrees of $S$-units and periodic expansion of $\sqrt {f}$”, Dokl. Math., 100:2 (2019), 1–5 | DOI | MR

[10] V. P. Platonov, M. M. Petrunin, and Yu. N. Shteinikov, “On the periodicity problem for the continued fraction expansion of elements of hyperelliptic fields with fundamental $S$-units of degree at most 11”, Dokl. Math., 104:5 (2021), 258–263 | DOI | DOI | MR | Zbl

[11] V. P. Platonov, M. M. Petrunin, and V. S. Zhgoon, “On the problem of periodicity of continued fraction expansions of $\sqrt {f}$ for cubic polynomials over number fields”, Dokl. Math., 102:1 (2020), 288–292 | DOI | DOI | MR | Zbl

[12] V. P. Platonov, V. S. Zhgoon, and M. M. Petrunin, “On the problem of periodicity of continued fraction expansions of $\sqrt {f}$ for cubic polynomials $f$ over algebraic number fields”, Sb. Math., 213:3 (2022), 412–442 | DOI | DOI | MR | Zbl

[13] V. P. Platonov, V. S. Zhgoon, M. M. Petrunin, and Yu. N. Shteinikov, “On the finiteness of hyperelliptic fields with special properties and periodic expansion of $\sqrt {f}$”, Dokl. Math., 98:3 (2018), 641–645 | DOI | MR | Zbl

[14] Schmidt W.M., “On continued fractions and Diophantine approximation in power series fields”, Acta arith., 95:2 (2000), 139–166 | DOI | MR | Zbl

[15] Sutherland A.V., “Constructing elliptic curves over finite fields with prescribed torsion”, Math. Comput., 81:278 (2012), 1131–1147 | DOI | MR | Zbl

[16] Tchebichef P., “Sur l'intégration des différentielles qui contiennent une racine carrée d'un polynome du troisième ou du quatrième degré”, J. math. pures appl., 2 (1857), 1–42