New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 278-286

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of describing square-free polynomials $f(x)$ of odd degree with periodic expansion of $\sqrt {f(x)}$ into a functional continued fraction in $k((x))$, where $k\subseteq \overline {\mathbb Q}$. We obtain a complete description of such polynomials $f(x)$ that does not depend on the field $k$ and the degree of a polynomial, provided that the degree $U$ of the fundamental $S$-unit of the corresponding hyperelliptic field $k(x)(\sqrt {f(x)})$ either does not exceed $12$ or is even and does not exceed $20$.
@article{TM_2023_320_a10,
     author = {V. P. Platonov and M. M. Petrunin},
     title = {New {Results} on the {Periodicity} {Problem} for {Continued} {Fractions} of {Elements} of {Hyperelliptic} {Fields}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {278--286},
     publisher = {mathdoc},
     volume = {320},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2023_320_a10/}
}
TY  - JOUR
AU  - V. P. Platonov
AU  - M. M. Petrunin
TI  - New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 278
EP  - 286
VL  - 320
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2023_320_a10/
LA  - ru
ID  - TM_2023_320_a10
ER  - 
%0 Journal Article
%A V. P. Platonov
%A M. M. Petrunin
%T New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 278-286
%V 320
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2023_320_a10/
%G ru
%F TM_2023_320_a10
V. P. Platonov; M. M. Petrunin. New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 278-286. http://geodesic.mathdoc.fr/item/TM_2023_320_a10/