Simple Complex Tori of Algebraic Dimension 0
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 27-45
Voir la notice de l'article provenant de la source Math-Net.Ru
Using Galois theory, we explicitly construct (in all complex dimensions $g\ge 2$) an infinite family of simple $g$-dimensional complex tori $T$ that enjoy the following properties:
$\bullet $ the Picard number of $T$ is $0;$ in particular, the algebraic dimension of $T$ is $0$;
$\bullet $ if $T^\vee $ is the dual of $T$, then $\mathrm {Hom}(T,T^\vee )=\{0\}$;
$\bullet $ the automorphism group $\mathrm {Aut}(T)$ of $T$ is isomorphic to $\{\pm 1\} \times \mathbb Z^{g-1}$;
$\bullet $ the endomorphism algebra $\mathrm {End}^0(T)$ of $T$ is a purely imaginary number field of degree $2g$.
Keywords:
complex tori
Mots-clés : algebraic dimension 0.
Mots-clés : algebraic dimension 0.
@article{TM_2023_320_a1,
author = {Tatiana Bandman and Yuri G. Zarhin},
title = {Simple {Complex} {Tori} of {Algebraic} {Dimension} 0},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {27--45},
publisher = {mathdoc},
volume = {320},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2023_320_a1/}
}
Tatiana Bandman; Yuri G. Zarhin. Simple Complex Tori of Algebraic Dimension 0. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 27-45. http://geodesic.mathdoc.fr/item/TM_2023_320_a1/