The Bernstein Centre in Natural Characteristic
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 5-26

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a locally profinite group and let $k$ be a field of positive characteristic $p$. Let $Z(G)$ denote the centre of $G$ and let $\mathfrak Z(G)$ denote the Bernstein centre of $G$, that is, the $k$-algebra of natural endomorphisms of the identity functor on the category of smooth $k$-linear representations of $G$. We show that if $G$ contains an open pro-$p$ subgroup but no proper open centralisers, then there is a natural isomorphism of $k$-algebras $\mathfrak Z(Z(G)) \xrightarrow {\cong } \mathfrak Z(G)$. We also describe $\mathfrak Z(Z(G))$ explicitly as a particular completion of the abstract group ring $k[Z(G)]$. Both conditions on $G$ are satisfied whenever $G$ is the group of points of any connected smooth algebraic group defined over a local field of residue characteristic $p$. In particular, when the algebraic group is semisimple, we show that $\mathfrak Z(G) = k[Z(G)]$.
@article{TM_2023_320_a0,
     author = {Konstantin Ardakov and Peter Schneider},
     title = {The {Bernstein} {Centre} in {Natural} {Characteristic}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {5--26},
     publisher = {mathdoc},
     volume = {320},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2023_320_a0/}
}
TY  - JOUR
AU  - Konstantin Ardakov
AU  - Peter Schneider
TI  - The Bernstein Centre in Natural Characteristic
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 5
EP  - 26
VL  - 320
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2023_320_a0/
LA  - ru
ID  - TM_2023_320_a0
ER  - 
%0 Journal Article
%A Konstantin Ardakov
%A Peter Schneider
%T The Bernstein Centre in Natural Characteristic
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 5-26
%V 320
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2023_320_a0/
%G ru
%F TM_2023_320_a0
Konstantin Ardakov; Peter Schneider. The Bernstein Centre in Natural Characteristic. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 5-26. http://geodesic.mathdoc.fr/item/TM_2023_320_a0/