Weak Limits of Consecutive Projections and of Greedy Steps
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 64-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a Hilbert space. We investigate the properties of weak limit points of iterates of random projections onto $K\geq 2$ closed convex sets in $H$ and the parallel properties of weak limit points of the residuals of random greedy approximation with respect to $K$ dictionaries. In the case of convex sets these properties imply weak convergence in all the cases known so far. In particular, we give a short proof of the theorem of Amemiya and Ando on weak convergence when the convex sets are subspaces. The question of weak convergence in general remains open.
Keywords: projections, greedy approximations, convex set, dictionary, Hilbert space.
@article{TM_2022_319_a4,
     author = {Petr A. Borodin and Eva Kopeck\'a},
     title = {Weak {Limits} of {Consecutive} {Projections} and of {Greedy} {Steps}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {64--72},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_319_a4/}
}
TY  - JOUR
AU  - Petr A. Borodin
AU  - Eva Kopecká
TI  - Weak Limits of Consecutive Projections and of Greedy Steps
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 64
EP  - 72
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_319_a4/
LA  - ru
ID  - TM_2022_319_a4
ER  - 
%0 Journal Article
%A Petr A. Borodin
%A Eva Kopecká
%T Weak Limits of Consecutive Projections and of Greedy Steps
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 64-72
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_319_a4/
%G ru
%F TM_2022_319_a4
Petr A. Borodin; Eva Kopecká. Weak Limits of Consecutive Projections and of Greedy Steps. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 64-72. http://geodesic.mathdoc.fr/item/TM_2022_319_a4/

[1] Amemiya I., Ando T., “Convergence of random products of contractions in Hilbert space”, Acta sci. math., 26 (1965), 239–244 | MR

[2] Badea C., Grivaux S., Müller V., “A generalization of the Friedrichs angle and the method of alternating projections”, C. r. Math. Acad. sci. Paris, 348:1–2 (2010), 53–56 | DOI | MR

[3] C. Badea, S. Grivaux, and V. Müller, “The rate of convergence in the method of alternating projections”, St. Petersburg Math. J., 23:3 (2012), 413–434 | DOI | MR

[4] Bauschke H.H., Deutsch F., Hundal H., “Characterizing arbitrarily slow convergence in the method of alternating projections”, Int. Trans. Oper. Res., 16:4 (2009), 413–425 | DOI | MR

[5] P. A. Borodin, “Greedy approximation by arbitrary sets”, Izv. Math., 84:2 (2020), 246–261 | DOI | MR

[6] P. A. Borodin, “Example of divergence of a greedy algorithm with respect to an asymmetric dictionary”, Math. Notes, 109:3–4 (2021), 379–385 | DOI | MR

[7] Borodin P.A., Kopecká E., “Alternating projections, remotest projections, and greedy approximation”, J. Approx. Theory, 260 (2020), 105486 | DOI | MR

[8] L. M. Bregman, “The method of successive projection for finding a common point of convex sets”, Sov. Math., Dokl., 6 (1965), 688–692

[9] Dye J.M., Reich S., “Unrestricted iterations of nonexpansive mappings in Hilbert space”, Nonlinear Anal. Theory Methods Appl., 18:2 (1992), 199–207 | DOI | MR

[10] Halperin I., “The product of projection operators”, Acta sci. math., 23 (1962), 96–99 | MR

[11] Hundal H.S., “An alternating projection that does not converge in norm”, Nonlinear Anal. Theory Methods Appl., 57:1 (2004), 35–61 | DOI | MR

[12] Kopecká E., “Spokes, mirrors and alternating projections”, Nonlinear Anal. Theory Methods Appl., 68:6 (2008), 1759–1764 | DOI | MR

[13] Kopecká E., “When products of projections diverge”, J. London Math. Soc. Ser. 2, 102:1 (2020), 345–367 | DOI | MR

[14] Kopecká E., Müller V., “A product of three projections”, Stud. math., 223:2 (2014), 175–186 | DOI | MR

[15] Kopecká E., Paszkiewicz A., “Strange products of projections”, Isr. J. Math., 219:1 (2017), 271–286 | DOI | MR

[16] Matoušková E., Reich S., “The Hundal example revisited”, J. Nonlinear Convex Anal., 4:3 (2003), 411–427 | MR

[17] Moreau J.-J., “Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires”, C. r. Acad. sci. Paris, 255 (1962), 238–240 | MR

[18] Von Neumann J., “On rings of operators. Reduction theory”, Ann. Math. Ser. 2, 50 (1949), 401–485 | DOI | MR

[19] Paszkiewicz A., The Amemiya–Ando conjecture falls, E-print, 2012, arXiv: 1203.3354 [math.FA]

[20] Temlyakov V., Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011 | MR