Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_319_a4, author = {Petr A. Borodin and Eva Kopeck\'a}, title = {Weak {Limits} of {Consecutive} {Projections} and of {Greedy} {Steps}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {64--72}, publisher = {mathdoc}, volume = {319}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_319_a4/} }
TY - JOUR AU - Petr A. Borodin AU - Eva Kopecká TI - Weak Limits of Consecutive Projections and of Greedy Steps JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 64 EP - 72 VL - 319 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_319_a4/ LA - ru ID - TM_2022_319_a4 ER -
Petr A. Borodin; Eva Kopecká. Weak Limits of Consecutive Projections and of Greedy Steps. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 64-72. http://geodesic.mathdoc.fr/item/TM_2022_319_a4/
[1] Amemiya I., Ando T., “Convergence of random products of contractions in Hilbert space”, Acta sci. math., 26 (1965), 239–244 | MR
[2] Badea C., Grivaux S., Müller V., “A generalization of the Friedrichs angle and the method of alternating projections”, C. r. Math. Acad. sci. Paris, 348:1–2 (2010), 53–56 | DOI | MR
[3] C. Badea, S. Grivaux, and V. Müller, “The rate of convergence in the method of alternating projections”, St. Petersburg Math. J., 23:3 (2012), 413–434 | DOI | MR
[4] Bauschke H.H., Deutsch F., Hundal H., “Characterizing arbitrarily slow convergence in the method of alternating projections”, Int. Trans. Oper. Res., 16:4 (2009), 413–425 | DOI | MR
[5] P. A. Borodin, “Greedy approximation by arbitrary sets”, Izv. Math., 84:2 (2020), 246–261 | DOI | MR
[6] P. A. Borodin, “Example of divergence of a greedy algorithm with respect to an asymmetric dictionary”, Math. Notes, 109:3–4 (2021), 379–385 | DOI | MR
[7] Borodin P.A., Kopecká E., “Alternating projections, remotest projections, and greedy approximation”, J. Approx. Theory, 260 (2020), 105486 | DOI | MR
[8] L. M. Bregman, “The method of successive projection for finding a common point of convex sets”, Sov. Math., Dokl., 6 (1965), 688–692
[9] Dye J.M., Reich S., “Unrestricted iterations of nonexpansive mappings in Hilbert space”, Nonlinear Anal. Theory Methods Appl., 18:2 (1992), 199–207 | DOI | MR
[10] Halperin I., “The product of projection operators”, Acta sci. math., 23 (1962), 96–99 | MR
[11] Hundal H.S., “An alternating projection that does not converge in norm”, Nonlinear Anal. Theory Methods Appl., 57:1 (2004), 35–61 | DOI | MR
[12] Kopecká E., “Spokes, mirrors and alternating projections”, Nonlinear Anal. Theory Methods Appl., 68:6 (2008), 1759–1764 | DOI | MR
[13] Kopecká E., “When products of projections diverge”, J. London Math. Soc. Ser. 2, 102:1 (2020), 345–367 | DOI | MR
[14] Kopecká E., Müller V., “A product of three projections”, Stud. math., 223:2 (2014), 175–186 | DOI | MR
[15] Kopecká E., Paszkiewicz A., “Strange products of projections”, Isr. J. Math., 219:1 (2017), 271–286 | DOI | MR
[16] Matoušková E., Reich S., “The Hundal example revisited”, J. Nonlinear Convex Anal., 4:3 (2003), 411–427 | MR
[17] Moreau J.-J., “Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires”, C. r. Acad. sci. Paris, 255 (1962), 238–240 | MR
[18] Von Neumann J., “On rings of operators. Reduction theory”, Ann. Math. Ser. 2, 50 (1949), 401–485 | DOI | MR
[19] Paszkiewicz A., The Amemiya–Ando conjecture falls, E-print, 2012, arXiv: 1203.3354 [math.FA]
[20] Temlyakov V., Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011 | MR