On the Sum of a Trigonometric Sine Series with Monotone Coefficients
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 29-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for each positive integer $n$ the conjugate Dirichlet kernel $\widetilde {D}_n(x)=\sum _{k=1}^{n}\sin (kx)$ is semiadditive on the interval $[0,2\pi ]$, that is, $\widetilde {D}_n(x_1) + \widetilde {D}_n(x_2) \ge \widetilde {D}_n(x_1 + x_2)$ for any nonnegative real numbers $x_1$ and $x_2$ such that $x_1 + x_2\le 2\pi $; moreover, for positive $x_1$ and $x_2$ with $x_1 + x_2 2\pi $, the equality is attained if and only if the condition $\widetilde {D}_n(x_1) = \widetilde {D}_n(x_2) = \widetilde {D}_n(x_1 + x_2) = 0$ is satisfied. We use this property of the conjugate Dirichlet kernel to study the sum of a sine series with monotone coefficients. We also examine the properties of some nonnegative trigonometric polynomials.
Keywords: conjugate Dirichlet kernel, semiadditive functions, nonnegative trigonometric polynomials.
@article{TM_2022_319_a2,
     author = {A. S. Belov},
     title = {On the {Sum} of a {Trigonometric} {Sine} {Series} with {Monotone} {Coefficients}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {29--50},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_319_a2/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - On the Sum of a Trigonometric Sine Series with Monotone Coefficients
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 29
EP  - 50
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_319_a2/
LA  - ru
ID  - TM_2022_319_a2
ER  - 
%0 Journal Article
%A A. S. Belov
%T On the Sum of a Trigonometric Sine Series with Monotone Coefficients
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 29-50
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_319_a2/
%G ru
%F TM_2022_319_a2
A. S. Belov. On the Sum of a Trigonometric Sine Series with Monotone Coefficients. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 29-50. http://geodesic.mathdoc.fr/item/TM_2022_319_a2/

[1] A. S. Belov, “Power series and Peano curves”, Math. USSR, Izv., 27:1 (1986), 1–26 | DOI | MR

[2] A. S. Belov, “Zeros of the sum of a trigonometric series with monotone coefficients”, Sov. Math., 33:12 (1989), 1–6 | MR

[3] Dyachenko M.I., “O ryadakh Fure s monotonno ubyvayuschimi koeffitsientami i nekotorykh voprosakh gladkosti sopryazhennykh funktsii”, Soobsch. AN Gruz. SSR, 104:3 (1981), 533–536

[4] D'yachenko M.I., “On some properties of trigonometric series with monotone decreasing coefficients”, Anal. math., 10:3 (1984), 193–205 | DOI | MR

[5] Dyachenko M.I., “O raskhodyaschikhsya ryadakh po slabo multiplikativnym sistemam funktsii”, Teoriya funktsii i priblizhenii: Tr. 2-i Sarat. zimn. shk. (24 yanv.–5 fevr. 1984 g.), Ch. 2, Izd-vo Sarat. un-ta, Saratov, 1986, 101–104

[6] Hartman P., Wintner A., “On sine series with monotone coefficients”, J. London Math. Soc., 28:1 (1953), 102–104 | DOI | MR

[7] K. A. Oganesyan, “The measure of the set of zeros of the sum of a nondegenerate sine series with monotone coefficients in the closed interval $[0,\pi ]$”, Math. Notes, 103:3–4 (2018), 621–625 | DOI | MR

[8] K. A. Oganesyan, “A functional inequality for sine series”, Math. Notes, 107:3–4 (2020), 531–533 | DOI | MR