Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_319_a18, author = {A. I. Tyulenev}, title = {Some {Porosity-Type} {Properties} of {Sets} {Related} to the $d${-Hausdorff} {Content}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {298--323}, publisher = {mathdoc}, volume = {319}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_319_a18/} }
TY - JOUR AU - A. I. Tyulenev TI - Some Porosity-Type Properties of Sets Related to the $d$-Hausdorff Content JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 298 EP - 323 VL - 319 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_319_a18/ LA - ru ID - TM_2022_319_a18 ER -
A. I. Tyulenev. Some Porosity-Type Properties of Sets Related to the $d$-Hausdorff Content. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 298-323. http://geodesic.mathdoc.fr/item/TM_2022_319_a18/
[1] Azzam J., Schul R., “An analyst's traveling salesman theorem for sets of dimension larger than one”, Math. Ann., 370:3–4 (2018), 1389–1476 | DOI | MR
[2] Azzam J., Villa M., “Quantitative comparisons of multiscale geometric properties”, Anal. PDE, 14:6 (2021), 1873–1904 | DOI | MR
[3] Denjoy A., “Sur une propriété de séries trigonométriques”, Amst. Ak. Versl., 29 (1920), 628–639
[4] E. P. Dolženko, “Boundary properties of arbitrary functions”, Math. USSR, Izv., 1:1 (1967), 1–12 | DOI | MR
[5] Ihnatsyeva L., Vähäkangas A.V., “Characterization of traces of smooth functions on Ahlfors regular sets”, J. Funct. Anal., 265:9 (2013), 1870–1915 | DOI | MR
[6] Jonsson A., “Atomic decomposition of Besov spaces on closed sets”, Function spaces, differential operators and nonlinear analysis, Teubner-Texte Math., 133, Teubner, Stuttgart, 1993, 285–289 | DOI | MR
[7] Koskela P., Rohde S., “Hausdorff dimension and mean porosity”, Math. Ann., 309:4 (1997), 593–609 | DOI | MR
[8] Luukkainen J., “Assouad dimension: Antifractal metrization, porous sets, and homogeneous measures”, J. Korean Math. Soc., 35:1 (1998), 23–76 | MR
[9] Mattila P., Geometry of sets and measures in Euclidean spaces: Fractals and rectifiability, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, Cambridge, 1999 | MR
[10] Yu. V. Netrusov, “Spectral synthesis in the Sobolev space generated by an integral metric”, J. Math. Sci., 85:2 (1997), 1814–1826 | DOI | MR
[11] Nieminen T., “Generalized mean porosity and dimension”, Ann. Acad. sci. Fenn. Math., 31:1 (2006), 143–172 | MR
[12] Rychkov V.S., “Linear extension operators for restrictions of function spaces to irregular open sets”, Stud. math., 140:2 (2000), 141–162 | DOI | MR
[13] Salli A., “On the Minkowski dimension of strongly porous fractal sets in $\mathbb R^n$”, Proc. London Math. Soc., 62:2 (1991), 353–372 | DOI | MR
[14] Shmerkin P., “Porosity, dimension, and local entropies: A survey”, Rev. Unión Mat. Argent., 52:2 (2011), 81–103 | MR
[15] Shvartsman P., “Sobolev $W^1_p$-spaces on closed subsets of $\mathbf R^n$”, Adv. Math., 220:6 (2009), 1842–1922 | DOI | MR
[16] Triebel H., The structure of functions, Monogr. Math., 97, Birkhäuser, Basel, 2001 | MR
[17] A. I. Tyulenev, “Almost sharp descriptions of traces of Sobolev spaces on compacta”, Math. Notes, 110:5–6 (2021), 976–980 | DOI | MR
[18] Tyulenev A.I., Almost sharp descriptions of traces of Sobolev $W^1_p(\mathbb R^n)$-spaces to arbitrary compact subsets of $\mathbb R^n$. The case $p\in (1,n]$, E-print, 2021, arXiv: 2109.07553 [math.FA] | MR
[19] Tyulenev A.I., “Restrictions of Sobolev $W_p^1(\mathbb R^2)$-spaces to planar rectifiable curves”, Ann. Fenn. math., 47:1 (2022), 507–531 | DOI | MR
[20] A. I. Tyulenev and S. K. Vodop'yanov, “On the Whitney problem for weighted Sobolev spaces”, Dokl. Math., 95:1 (2017), 79–83 | DOI | MR
[21] Väisälä J., “Porous sets and quasisymmetric maps”, Trans. Amer. Math. Soc., 299 (1987), 525–533 | DOI | MR
[22] S. K. Vodop'yanov and A. I. Tyulenev, “Sobolev $W_p^1$-spaces on $d$-thick closed subsets of $\mathbb R^n$”, Sb. Math., 211:6 (2020), 786–837 | DOI | MR