Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_319_a17, author = {Takashi Satomi}, title = {An {Inequality} for the {Compositions} of {Convex} {Functions} with {Convolutions} and an {Alternative} {Proof} of the {Brunn--Minkowski--Kemperman} {Inequality}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {280--297}, publisher = {mathdoc}, volume = {319}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_319_a17/} }
TY - JOUR AU - Takashi Satomi TI - An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn--Minkowski--Kemperman Inequality JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 280 EP - 297 VL - 319 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_319_a17/ LA - ru ID - TM_2022_319_a17 ER -
%0 Journal Article %A Takashi Satomi %T An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn--Minkowski--Kemperman Inequality %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 280-297 %V 319 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2022_319_a17/ %G ru %F TM_2022_319_a17
Takashi Satomi. An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn--Minkowski--Kemperman Inequality. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 280-297. http://geodesic.mathdoc.fr/item/TM_2022_319_a17/
[1] Brascamp H.J., Lieb E.H., “On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation”, J. Funct. Anal., 22:4 (1976), 366–389 | DOI | MR
[2] Brunn H., Über Ovale und Eiflächen, Inag. Diss., Akad. Buchdruckerei von R. Straub, München, 1887
[3] Christ M., “Near equality in the Riesz–Sobolev inequality”, Acta math. Sin. Engl. Ser., 35:6 (2019), 783–814 | DOI | MR
[4] Christ M., Iliopoulou M., “Inequalities of Riesz–Sobolev type for compact connected Abelian groups”, Amer. J. Math., 144:5 (2022), 1367–1435 | DOI | MR
[5] Green B., Ruzsa I.Z., “Sum-free sets in abelian groups”, Isr. J. Math., 147 (2005), 157–188 | DOI | MR
[6] Griesmer J.T., “Semicontinuity of structure for small sumsets in compact abelian groups”, Discrete Anal., 2019 (2019), 18 | MR
[7] Henstock R., Macbeath A.M., “On the measure of sum-sets. I: The theorems of Brunn, Minkowski, and Lusternik”, Proc. London Math. Soc. Ser. 3, 3 (1953), 182–194 | DOI | MR
[8] Hewitt E., Ross K.A., Abstract harmonic analysis, v. 1, Grundl. Math. Wiss., 115, Structure of topological groups, integration theory, group representations, 2nd ed., Springer, Berlin, 1979 | MR
[9] Jing Y., Tran C.-M., Minimal and nearly minimal measure expansions in connected unimodular groups, E-print, 2020, arXiv: 2006.01824 [math.CO]
[10] Jing Y., Tran C.-M., Zhang R., A nonabelian Brunn–Minkowski inequality, E-print, 2021, arXiv: 2101.07782 [math.GR]
[11] Kemperman J.H.B., “On products of sets in a locally compact group”, Fundam. math., 56 (1964), 51–68 | DOI | MR
[12] Kneser M., “Summenmengen in lokalkompakten abelschen Gruppen”, Math. Z., 66 (1956), 88–110 | DOI | MR
[13] Lusternik L., “Die Brunn–Minkowskische ungleichung für beliebige messbare Mengen”, C. r. Acad. sci. URSS, 3:2 (1935), 55–58
[14] Macbeath A.M., “On measure of sum sets. II: The sum-theorem for the torus”, Proc. Cambridge Philos. Soc., 49 (1953), 40–43 | DOI | MR
[15] McCrudden M., “On the Brunn–Minkowski coefficient of a locally compact unimodular group”, Proc. Cambridge Philos. Soc., 65 (1969), 33–45 | DOI | MR
[16] Minkowski H., Geometrie der Zahlen, B. G. Teubner, Leipzig, 1896 | MR
[17] Pollard J.M., “A generalisation of the theorem of Cauchy and Davenport”, J. London Math. Soc. Ser. 2, 8 (1974), 460–462 | DOI | MR
[18] Raikov D.A., “O slozhenii mnozhestv v smysle Shnirelmana”, Mat. sb., 5:2 (1939), 425–440
[19] Riesz F., “Sur une inégalité intégrale”, J. London Math. Soc., 5:3 (1930), 162–168 | DOI | MR
[20] Ruzsa I.Z., “A concavity property for the measure of product sets in groups”, Fundam. math., 140:3 (1992), 247–254 | DOI | MR
[21] Shields A., “Sur la mesure d'une somme vectorielle”, Fundam. math., 42 (1955), 57–60 | DOI | MR
[22] S. L. Sobolev, “On a theorem of functional analysis”, Am. Math. Soc., Transl., Ser. 2,, 34 (1963), 39–68
[23] Tao T., Spending symmetry, Preprint, UCLA, Los Angeles, CA, 2012 https://terrytao.files.wordpress.com/2012/11/blog-book.pdf
[24] Tao T., “Noncommutative sets of small doubling”, Eur. J. Comb., 34:8 (2013), 1459–1465 | DOI | MR
[25] T. Tao, “An inverse theorem for an inequality of Kneser”, Proc. Steklov Inst. Math., 303 (2018), 193–219 | DOI | MR
[26] Van Dantzig D., Studien over topologische algebra, H. J. Paris, Amsterdam, 1931
[27] Weil A., L'intégration dans les groupes topologiques et ses applications, Actual. sci. ind., 869, Hermann, Paris, 1940 | MR