Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_319_a11, author = {S. V. Konyagin and M. A. Korolev}, title = {On {Titchmarsh's} {Phenomenon} in the {Theory} of the {Riemann} {Zeta} {Function}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {182--201}, publisher = {mathdoc}, volume = {319}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_319_a11/} }
TY - JOUR AU - S. V. Konyagin AU - M. A. Korolev TI - On Titchmarsh's Phenomenon in the Theory of the Riemann Zeta Function JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 182 EP - 201 VL - 319 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_319_a11/ LA - ru ID - TM_2022_319_a11 ER -
S. V. Konyagin; M. A. Korolev. On Titchmarsh's Phenomenon in the Theory of the Riemann Zeta Function. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 182-201. http://geodesic.mathdoc.fr/item/TM_2022_319_a11/
[1] Arguin L.-P., Belius D., Bourgade P., Radziwiłł M., Soundararajan K., “Maximum of the Riemann zeta function on a short interval of the critical line”, Commun. Pure Appl. Math., 72:3 (2019), 500–535 | DOI | MR
[2] Arguin L.-P., Bourgade P., Radziwiłł M., The Fyodorov–Hiary–Keating conjecture. I, E-print, 2020, arXiv: 2007.00988v2 [math.PR]
[3] Balasubramanian R., “On the frequency of Titchmarsh's phenomenon for $\zeta (s)$. IV”, Hardy–Ramanujan J., 9 (1986), 1–10 | MR
[4] Balasubramanian R., Ramachandra K., “On the frequency of Titchmarsh's phenomenon for $\zeta (s)$. III”, Proc. Indian Acad. Sci. Sect. A, 86:4 (1977), 341–351 | DOI | MR
[5] Bohr H., “Again the Kronecker theorem”, J. London Math. Soc., 9 (1934), 5–6 | DOI | MR
[6] Bondarenko A., Seip K., “Large greatest common divisor sums and extreme values of the Riemann zeta function”, Duke Math. J., 166:9 (2017), 1685–1701 | DOI | MR
[7] Bondarenko A., Seip K., “Extreme values of the Riemann zeta function and its argument”, Math. Ann., 372:3–4 (2018), 999–1015 | DOI | MR
[8] R. N. Boyarinov, “On large values of the function $S(t)$ on short intervals”, Math. Notes, 89:3–4 (2011), 472–479 | DOI | MR
[9] M. E. Changa, “Lower bounds for the Riemann zeta function on the critical line”, Math. Notes, 76:5–6 (2004), 859–864 | DOI | MR
[10] De la Bretèche R., Tenenbaum G., “Sommes de Gál et applications”, Proc. London Math. Soc. Ser. 3, 119:1 (2019), 104–134 | DOI | MR
[11] Dong Z., On the distribution of large values of $|\zeta (\sigma +it)|$, E-print, 2021, arXiv: 2110.03288v1 [math.NT]
[12] Dong Z., Wei B., On large values of $|\zeta (\sigma +it)|$, E-print, 2021, arXiv: 2110.04278v1 [math.NT]
[13] Farmer D.W., Gonek S.M., Hughes C.P., “The maximum size of $L$-functions”, J. reine angew. Math., 609 (2007), 215–236 | MR
[14] Garaev M.Z., “Concerning the Karatsuba conjectures”, Taiwanese J. Math., 6:4 (2002), 573–580 | DOI | MR
[15] Gonek S.M., Montgomery H.L., “Kronecker's approximation theorem”, Indag. math., 27:2 (2016), 506–523 | DOI | MR
[16] Harper A.J., On the partition function of the Riemann zeta function, and the Fyodorov–Hiary–Keating conjecture, E-print, 2019, arXiv: 1906.05783v1 [math.NT] | MR
[17] L. Hörmander, The Analysis of Linear Partial Differential Operators. I: Distribution Theory and Fourier Analysis, Springer, Berlin, 1983 | MR
[18] A. A. Karatsuba, Basic Analytic Number Theory, Springer, Berlin, 1993 | MR | MR
[19] A. A. Karatsuba, “On lower estimates of the Riemann zeta function”, Dokl. Math., 63:1 (2001), 9–10
[20] A. A. Karatsuba, “Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line”, Izv. Math., 68:6 (2004), 1157–1163 | DOI | MR
[21] Karatsuba A.A., “Zero multiplicity and lower bound estimates of $|\zeta (s)|$”, Funct. approx. Comment. math., 35 (2006), 195–207 | DOI | MR
[22] A. A. Karatsuba and M. A. Korolev, “The argument of the Riemann zeta function”, Russ. Math. Surv., 60:3 (2005), 433–488 | DOI | MR
[23] A. A. Karatsuba and M. A. Korolev, “Behaviour of the argument of the Riemann zeta function on the critical line”, Russ. Math. Surv., 61:3 (2006), 389–482 | DOI | MR
[24] M. A. Korolev, “On large values of the function $S(t)$ on short intervals”, Izv. Math., 69:1 (2005), 113–122 | DOI | MR
[25] Korolev M.A., “On large values of the Riemann zeta-function on short segments of the critical line”, Acta arith., 166:4 (2014), 349–390 | DOI | MR
[26] Korolev M.A., “On the large values of the Riemann zeta-function on the critical line. II”, Moscow J. Comb. Number Theory, 5:3 (2015), 60–85 | MR
[27] Littlewood J.E., “On the Riemann zeta-function”, Proc. London Math. Soc. Ser. 2, 24 (1926), 175–201 | DOI | MR
[28] Mueller J., “On the Riemann zeta-function $\zeta (s)$—Gaps between sign changes of $S(t)$”, Mathematika, 29:2 (1982), 264–269 | DOI | MR
[29] F. W. J. Olver, Asymptotics and Special Functions, Academic, New York, 1974 | MR
[30] Ramachandra K., “On the frequency of Titchmarsh's phenomenon for $\zeta (s)$”, J. London Math. Soc. Ser. 2, 8 (1974), 683–690 | DOI | MR
[31] Ramachandra K., “Progress towards a conjecture on the mean-value of Titchmarsh series”, Recent progress in analytic number theory (Durham Symp., 1979), v. 1, ed. by H. Halberstam, C. Hooley, Acad. Press, London, 1981, 303–318 | MR
[32] Ramachandra K., “On the frequency of Titchmarsh's phenomenon for $\zeta (s)$. VII”, Ann. Acad. sci. Fenn. Ser. A. I. Math., 14:1 (1989), 27–40 | DOI | MR
[33] Ramachandra K., Lectures on the mean-value and omega-theorems for the Riemann zeta-function, Lect. Math. Phys. Math. Tata Inst. Fundam. Res., 85, Springer, Berlin, 1995 | MR
[34] Rosser J.B., Schoenfeld L., “Approximate formulas for some functions of prime numbers”, Ill. J. Math., 6 (1962), 64–94 | MR
[35] Selberg A., “Contributions to the theory of the Riemann zeta-function”, Arch. Math. Naturvid., 48:5 (1946), 89–155 | MR
[36] Selberg A., “The zeta-function and the Riemann hypothesis”, 10. Skand. Mat. Kongr. (København, 1946), Jul. Gjellerup, Copenhagen, 1947, 187–200 | MR
[37] Soundararajan K., “Extreme values of zeta and $L$-functions”, Math. Ann., 342:2 (2008), 467–486 | DOI | MR
[38] Titchmarsh E.C., “On an inequality satisfied by the zeta-function of Riemann”, Proc. London Math. Soc., 28 (1928), 70–80 | DOI | MR
[39] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1951 | MR
[40] Tsang K.-M., The distribution of the values of the Riemann zeta-function, Ph.D. Thesis, Princeton Univ., Princeton, 1984 | MR