On Titchmarsh's Phenomenon in the Theory of the Riemann Zeta Function
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 182-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the maximum modulus of the Riemann zeta function $\zeta (s)$ increases unboundedly when $s = 0.5+it$ varies on very short intervals of the critical line, and obtain an explicit lower bound for the growth rate of this maximum. This main result of the paper improves the second author's result of 2014 stating that this maximum becomes greater than any arbitrarily large fixed constant as $t$ increases. We also apply our method of proof to problems of large values of the argument of the zeta function and of irregularities in the distribution of the ordinates of zeros of $\zeta (s)$ on very short intervals of the critical line. We prove all these assertions assuming the Riemann hypothesis. The main ingredient of the method is an “effective” lemma on joint approximations of logarithms of prime numbers.
Keywords: Riemann zeta function, critical line, joint approximations, logarithms of primes
Mots-clés : Vinogradov cup.
@article{TM_2022_319_a11,
     author = {S. V. Konyagin and M. A. Korolev},
     title = {On {Titchmarsh's} {Phenomenon} in the {Theory} of the {Riemann} {Zeta} {Function}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {182--201},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_319_a11/}
}
TY  - JOUR
AU  - S. V. Konyagin
AU  - M. A. Korolev
TI  - On Titchmarsh's Phenomenon in the Theory of the Riemann Zeta Function
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 182
EP  - 201
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_319_a11/
LA  - ru
ID  - TM_2022_319_a11
ER  - 
%0 Journal Article
%A S. V. Konyagin
%A M. A. Korolev
%T On Titchmarsh's Phenomenon in the Theory of the Riemann Zeta Function
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 182-201
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_319_a11/
%G ru
%F TM_2022_319_a11
S. V. Konyagin; M. A. Korolev. On Titchmarsh's Phenomenon in the Theory of the Riemann Zeta Function. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 182-201. http://geodesic.mathdoc.fr/item/TM_2022_319_a11/

[1] Arguin L.-P., Belius D., Bourgade P., Radziwiłł M., Soundararajan K., “Maximum of the Riemann zeta function on a short interval of the critical line”, Commun. Pure Appl. Math., 72:3 (2019), 500–535 | DOI | MR

[2] Arguin L.-P., Bourgade P., Radziwiłł M., The Fyodorov–Hiary–Keating conjecture. I, E-print, 2020, arXiv: 2007.00988v2 [math.PR]

[3] Balasubramanian R., “On the frequency of Titchmarsh's phenomenon for $\zeta (s)$. IV”, Hardy–Ramanujan J., 9 (1986), 1–10 | MR

[4] Balasubramanian R., Ramachandra K., “On the frequency of Titchmarsh's phenomenon for $\zeta (s)$. III”, Proc. Indian Acad. Sci. Sect. A, 86:4 (1977), 341–351 | DOI | MR

[5] Bohr H., “Again the Kronecker theorem”, J. London Math. Soc., 9 (1934), 5–6 | DOI | MR

[6] Bondarenko A., Seip K., “Large greatest common divisor sums and extreme values of the Riemann zeta function”, Duke Math. J., 166:9 (2017), 1685–1701 | DOI | MR

[7] Bondarenko A., Seip K., “Extreme values of the Riemann zeta function and its argument”, Math. Ann., 372:3–4 (2018), 999–1015 | DOI | MR

[8] R. N. Boyarinov, “On large values of the function $S(t)$ on short intervals”, Math. Notes, 89:3–4 (2011), 472–479 | DOI | MR

[9] M. E. Changa, “Lower bounds for the Riemann zeta function on the critical line”, Math. Notes, 76:5–6 (2004), 859–864 | DOI | MR

[10] De la Bretèche R., Tenenbaum G., “Sommes de Gál et applications”, Proc. London Math. Soc. Ser. 3, 119:1 (2019), 104–134 | DOI | MR

[11] Dong Z., On the distribution of large values of $|\zeta (\sigma +it)|$, E-print, 2021, arXiv: 2110.03288v1 [math.NT]

[12] Dong Z., Wei B., On large values of $|\zeta (\sigma +it)|$, E-print, 2021, arXiv: 2110.04278v1 [math.NT]

[13] Farmer D.W., Gonek S.M., Hughes C.P., “The maximum size of $L$-functions”, J. reine angew. Math., 609 (2007), 215–236 | MR

[14] Garaev M.Z., “Concerning the Karatsuba conjectures”, Taiwanese J. Math., 6:4 (2002), 573–580 | DOI | MR

[15] Gonek S.M., Montgomery H.L., “Kronecker's approximation theorem”, Indag. math., 27:2 (2016), 506–523 | DOI | MR

[16] Harper A.J., On the partition function of the Riemann zeta function, and the Fyodorov–Hiary–Keating conjecture, E-print, 2019, arXiv: 1906.05783v1 [math.NT] | MR

[17] L. Hörmander, The Analysis of Linear Partial Differential Operators. I: Distribution Theory and Fourier Analysis, Springer, Berlin, 1983 | MR

[18] A. A. Karatsuba, Basic Analytic Number Theory, Springer, Berlin, 1993 | MR | MR

[19] A. A. Karatsuba, “On lower estimates of the Riemann zeta function”, Dokl. Math., 63:1 (2001), 9–10

[20] A. A. Karatsuba, “Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line”, Izv. Math., 68:6 (2004), 1157–1163 | DOI | MR

[21] Karatsuba A.A., “Zero multiplicity and lower bound estimates of $|\zeta (s)|$”, Funct. approx. Comment. math., 35 (2006), 195–207 | DOI | MR

[22] A. A. Karatsuba and M. A. Korolev, “The argument of the Riemann zeta function”, Russ. Math. Surv., 60:3 (2005), 433–488 | DOI | MR

[23] A. A. Karatsuba and M. A. Korolev, “Behaviour of the argument of the Riemann zeta function on the critical line”, Russ. Math. Surv., 61:3 (2006), 389–482 | DOI | MR

[24] M. A. Korolev, “On large values of the function $S(t)$ on short intervals”, Izv. Math., 69:1 (2005), 113–122 | DOI | MR

[25] Korolev M.A., “On large values of the Riemann zeta-function on short segments of the critical line”, Acta arith., 166:4 (2014), 349–390 | DOI | MR

[26] Korolev M.A., “On the large values of the Riemann zeta-function on the critical line. II”, Moscow J. Comb. Number Theory, 5:3 (2015), 60–85 | MR

[27] Littlewood J.E., “On the Riemann zeta-function”, Proc. London Math. Soc. Ser. 2, 24 (1926), 175–201 | DOI | MR

[28] Mueller J., “On the Riemann zeta-function $\zeta (s)$—Gaps between sign changes of $S(t)$”, Mathematika, 29:2 (1982), 264–269 | DOI | MR

[29] F. W. J. Olver, Asymptotics and Special Functions, Academic, New York, 1974 | MR

[30] Ramachandra K., “On the frequency of Titchmarsh's phenomenon for $\zeta (s)$”, J. London Math. Soc. Ser. 2, 8 (1974), 683–690 | DOI | MR

[31] Ramachandra K., “Progress towards a conjecture on the mean-value of Titchmarsh series”, Recent progress in analytic number theory (Durham Symp., 1979), v. 1, ed. by H. Halberstam, C. Hooley, Acad. Press, London, 1981, 303–318 | MR

[32] Ramachandra K., “On the frequency of Titchmarsh's phenomenon for $\zeta (s)$. VII”, Ann. Acad. sci. Fenn. Ser. A. I. Math., 14:1 (1989), 27–40 | DOI | MR

[33] Ramachandra K., Lectures on the mean-value and omega-theorems for the Riemann zeta-function, Lect. Math. Phys. Math. Tata Inst. Fundam. Res., 85, Springer, Berlin, 1995 | MR

[34] Rosser J.B., Schoenfeld L., “Approximate formulas for some functions of prime numbers”, Ill. J. Math., 6 (1962), 64–94 | MR

[35] Selberg A., “Contributions to the theory of the Riemann zeta-function”, Arch. Math. Naturvid., 48:5 (1946), 89–155 | MR

[36] Selberg A., “The zeta-function and the Riemann hypothesis”, 10. Skand. Mat. Kongr. (København, 1946), Jul. Gjellerup, Copenhagen, 1947, 187–200 | MR

[37] Soundararajan K., “Extreme values of zeta and $L$-functions”, Math. Ann., 342:2 (2008), 467–486 | DOI | MR

[38] Titchmarsh E.C., “On an inequality satisfied by the zeta-function of Riemann”, Proc. London Math. Soc., 28 (1928), 70–80 | DOI | MR

[39] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1951 | MR

[40] Tsang K.-M., The distribution of the values of the Riemann zeta-function, Ph.D. Thesis, Princeton Univ., Princeton, 1984 | MR