Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_319_a1, author = {S. V. Astashkin and P. A. Terekhin}, title = {On {Quasibases} and {Bases} of {Symmetric} {Spaces} {Consisting} of {Nonnegative} {Functions}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {20--28}, publisher = {mathdoc}, volume = {319}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_319_a1/} }
TY - JOUR AU - S. V. Astashkin AU - P. A. Terekhin TI - On Quasibases and Bases of Symmetric Spaces Consisting of Nonnegative Functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 20 EP - 28 VL - 319 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_319_a1/ LA - ru ID - TM_2022_319_a1 ER -
%0 Journal Article %A S. V. Astashkin %A P. A. Terekhin %T On Quasibases and Bases of Symmetric Spaces Consisting of Nonnegative Functions %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 20-28 %V 319 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2022_319_a1/ %G ru %F TM_2022_319_a1
S. V. Astashkin; P. A. Terekhin. On Quasibases and Bases of Symmetric Spaces Consisting of Nonnegative Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 20-28. http://geodesic.mathdoc.fr/item/TM_2022_319_a1/
[1] Albiac F., Kalton N.J., Topics in Banach space theory, Grad. Texts Math., 233, Springer, New York, 2006 | MR
[2] Astashkin S.V., “$\Lambda (p)$-spaces”, J. Funct. Anal., 266:8 (2014), 5174–5198 | DOI | MR
[3] S. V. Astashkin, The Rademacher System in Function Spaces, Birkhäuser, Cham, 2020 | MR
[4] Astashkin S.V., Terekhin P.A., “Representing systems of dilations and translations in symmetric function spaces”, J. Fourier Anal. Appl., 26:1 (2020), 13 | DOI | MR
[5] Carothers N.L., A short course on Banach space theory, LMS Stud. Texts, 64, Cambridge Univ. Press, Cambridge, 2005 | MR
[6] J. Diestel, Geometry of Banach Spaces: Selected Topics, Lect. Notes Math., 485, Springer, Berlin, 1975 | DOI | MR
[7] Faber G., “Über die Orthogonalfunktionen des Herrn Haar”, Deutsche Math.-Ver., 19 (1910), 104–112
[8] Filippov V.I., Oswald P., “Representation in $L_p$ by series of translates and dilates of one function”, J. Approx. Theory, 82:1 (1995), 15–29 | DOI | MR
[9] Johnson W.B., Schechtman G., “A Schauder basis for $L_1(0,\infty )$ consisting of non-negative functions”, Ill. J. Math., 59:2 (2015), 337–344 | MR
[10] Kadec M.I., Pełczyński A., “Bases, lacunary sequences and complemented subspaces in the spaces $L_p$”, Stud. math., 21 (1962), 161–176 | DOI | MR
[11] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982 | MR | MR
[12] B. S. Kashin and A. A. Saakyan, Orthogonal Series, Transl. Math. Monogr., 75, Am. Math. Soc., Providence, RI, 1989 | MR
[13] Kazarian K.S., Zink R.E., “Subsystems of the Schauder system that are quasibases for $L^p[0,1]$, $1\le p+\infty $”, Proc. Amer. Math. Soc., 126:10 (1998), 2883–2893 | DOI | MR
[14] S. G. Kreĭn, Yu. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators, Transl. Math. Monogr., 54, Am. Math. Soc, Providence, RI, 1982 | MR
[15] Lindenstrauss J., Tzafriri L., Classical Banach spaces. II: Function spaces, Springer, Berlin, 1979 | MR
[16] Powell A.M., Spaeth A.H., “Nonnegativity constraints for structured complete systems”, Trans. Amer. Math. Soc., 368:8 (2016), 5783–5806 | DOI | MR
[17] A. A. Talalyan, “The representation of measurable functions by series”, Russ. Math. Surv., 15:5 (1960), 75–136 | DOI | MR
[18] E. V. Tokarev, “Subspaces of symmetric spaces of functions”, Funct. Anal. Appl., 13:2 (1979), 152–153 | DOI | MR
[19] P. L. Ul'yanov, “On series with respect to a Schauder system”, Math. Notes, 7:4 (1970), 261–268 | DOI