Three Stages in the Development of Approximation Theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 7-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some fundamental ideas and the results of approximation theory based on them are reviewed. The review covers the development of this branch of mathematics from its origins to the end of the 20th century.
@article{TM_2022_319_a0,
     author = {V. M. Tikhomirov},
     title = {Three {Stages} in the {Development} of {Approximation} {Theory}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--19},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_319_a0/}
}
TY  - JOUR
AU  - V. M. Tikhomirov
TI  - Three Stages in the Development of Approximation Theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 7
EP  - 19
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_319_a0/
LA  - ru
ID  - TM_2022_319_a0
ER  - 
%0 Journal Article
%A V. M. Tikhomirov
%T Three Stages in the Development of Approximation Theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 7-19
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_319_a0/
%G ru
%F TM_2022_319_a0
V. M. Tikhomirov. Three Stages in the Development of Approximation Theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 7-19. http://geodesic.mathdoc.fr/item/TM_2022_319_a0/

[1] Alimov A.R., Tsar'kov I.G., Geometric approximation theory, Springer, Cham, 2021 | MR

[2] V. V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems”, Russ. Math. Surv., 51:6 (1996), 1093—1126 | DOI | MR

[3] Babenko K.I., Osnovy chislennogo analiza, Nauka, M., 1986

[4] Babenko V.F., Korneichuk N.P., Kofanov V.A., Pichugov S.A., Neravenstva dlya proizvodnykh i ikh prilozheniya, Nauk. dumka, Kiev, 2003

[5] Bagdasarov S.K., Chebyshev splines and Kolmogorov inequalities, Oper. Theory: Adv. Appl., 105, Birkhäuser, Basel, 1998 | MR

[6] Bernshtein S.N., “O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov dannoi stepeni”, Soobsch. Khark. mat. o-va. Ser. 2, 13 (1912), 49–194; Собрание сочинений, т. 1, Конструктивная теория функций (1905–1930), Изд-во АН СССР, М., 1952, 11–104

[7] Bernshtein S.N., “O novykh issledovaniyakh, otnosyaschikhsya k nailuchshemu priblizheniyu nepreryvnykh funktsii mnogochlenami”, UMN, 5:4 (1950), 121–131

[8] Dzyadyk V.K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR

[9] B. S. Kašin, “Diameters of some finite-dimensional sets and classes of smooth functions”, Math. USSR, Izv., 11:2 (1977), 317–333 | DOI

[10] Kolmogoroff A., “Zur Grössenordnung des Restgliedes Fourierscher Reihen differenzierbarer Funktionen”, Ann. Math. Ser. 2, 36 (1935), 521–526 | DOI | MR

[11] Kolmogoroff A., “Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse”, Ann. Math. Ser. 2, 37 (1936), 107–110 | DOI | MR

[12] Kolmogorov A.N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Matematika, v. 3, Uch. zap. MGU, 30, 1939, 3–16

[13] Kolmogorov A.N., “Zamechanie no povodu mnogochlenov P.L. Chebysheva, naimenee uklonyayuschikhsya ot zadannoi funktsii”, UMN, 3:1 (1948), 216–221

[14] Kolmogorov A.N., “Asimptoticheskie kharakteristiki nekotorykh vpolne ogranichennykh metricheskikh prostranstv”, DAN SSSR, 108:3 (1956), 585–589

[15] Kolmogorov A.N., Petrov A.A., Smirnov Yu.M., “Odna formula Gaussa iz teorii metoda naimenshikh kvadratov”, Izv. AN SSSR. Ser. mat., 11:6 (1947), 561–566 | MR

[16] Korneichuk N.P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[17] N. Korneichuk, Exact Constants in Approximation Theory, Encycl. Math. Appl., 38, Cambridge Univ. Press, Cambridge, 1991 | MR | MR

[18] Lokutsievskii O.V., Gavrikov M.B., Nachala chislennogo analiza, TOO “Yanus”, M., 1995 | MR

[19] G. G. Magaril-Il'yaev and K. Yu. Osipenko, “Optimal recovery of functionals based on inaccurate data”, Math. Notes, 50:6 (1991), 1274–1279 | DOI | MR

[20] I. P. Natanson, Constructive Function Theory, Frederick Ungar Publ. Co., New York, 1965 | MR | MR

[21] S. M. Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems, Grundl. Math. Wiss., 205, Springer, Berlin, 1975 | MR

[22] Osipenko K.Yu., Optimal recovery of analytic functions, Nova Sci. Publ., Huntington, NY, 2000

[23] Shannon C.E., Weaver W., The mathematical theory of communication, Univ. III. Press, Urbana, 1949 | MR

[24] Stechkin S.B., Subbotin Yu.N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR

[25] Tchebychéw P., “Théorie des mécanismes connus sous le nom de parallélogrammes”, Mémoires présentés à l'Académie Impériale des Sciences de St.-Pétersbourg par divers savants, v. VII, Acad. Imp. Sci., St.-Petersbourg, 1854, 537–568; Chebyshev P.L., “Teoriya mekhanizmov, izvestnykh pod nazvaniem parallelogrammov”, UMN, 1:2 (1946), 12–37 ; Полное собрание сочинений П.Л. Чебышева, т. 2, Математический анализ, Изд-во АН СССР, М.; Л., 1947, 23–51 ; P. Tchebychéw, “Théorie des mécanismes connus sous le nom de parallélogrammes”, Mémoires présentés à l'Académie Impériale des Sciences de St.-Pétersbourg par divers savants, v. VII, Acad. Imp. Sci., St.-Petersbourg, 1854, 537–568 | MR

[26] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976

[27] V. M. Tikhomirov, “Leonid Kantorovich and approximation theory”, Sib. Math. J., 63:1 (2022), 173–178 | DOI | MR

[28] Vasilev A., “P. L. Chebyshev”, Volzhskii vestn., 1894, no. 319, 1–2 https://tcheb.ru/.data/localdocs/TchebRu\textunderscore obituary.pdf

[29] A. A. Zhensykbaev, “Monosplines of minimal norm and the best quadrature formulae”, Russ. Math. Surv., 36:4 (1981), 121–180 | DOI | MR