Homology and Cohomology of the Lamplighter Lie Algebra
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 166-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the lamplighter Lie algebra $\mathfrak l$ over the field of rational numbers, introduced by S. Ivanov, R. Mikhailov, and A. Zaikovskii, is isomorphic to the infinite-dimensional naturally graded Lie algebra of maximal class $\mathfrak m_0$. Y. Félix and A. Murillo proved that its $q$-dimensional homology $H_q(\mathfrak l,\mathbb Q)$ is infinite-dimensional. However, they failed to completely calculate the spaces $H_q(\mathfrak l,\mathbb Q)$, $q\ge 3$. In this paper, an infinite basis of the bigraded homology $H_{*,*}(\mathfrak l,\mathbb Q)$ is explicitly constructed using the results of D. Millionshchikov and A. Fialowski on the cohomology $H^*(\mathfrak l,\mathbb Q)$.
Keywords: homology, cohomology, lamplighter group, pronilpotent completion, $\mathfrak {sl}_2$-module.
Mots-clés : Lie algebra of maximal class
@article{TM_2022_318_a9,
     author = {D. V. Millionshchikov},
     title = {Homology and {Cohomology} of the {Lamplighter} {Lie} {Algebra}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {166--176},
     publisher = {mathdoc},
     volume = {318},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_318_a9/}
}
TY  - JOUR
AU  - D. V. Millionshchikov
TI  - Homology and Cohomology of the Lamplighter Lie Algebra
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 166
EP  - 176
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_318_a9/
LA  - ru
ID  - TM_2022_318_a9
ER  - 
%0 Journal Article
%A D. V. Millionshchikov
%T Homology and Cohomology of the Lamplighter Lie Algebra
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 166-176
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_318_a9/
%G ru
%F TM_2022_318_a9
D. V. Millionshchikov. Homology and Cohomology of the Lamplighter Lie Algebra. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 166-176. http://geodesic.mathdoc.fr/item/TM_2022_318_a9/

[1] Bourbaki N., Groupes et algèbres de Lie. Chapitres 2 et 3, Hermann, Paris, 1972 | MR

[2] Bousfield A.K., Kan D.M., Homotopy limits, completions and localizations, Lect. Notes Math., 304, Springer, Berlin, 1972 | DOI | MR | Zbl

[3] Dixmier J., “Cohomologie des algèbres de Lie nilpotentes”, Acta sci. math., 16 (1955), 246–250 | MR | Zbl

[4] G. L. Fel'dman, “Ends of Lie algebras”, Russ. Math. Surv., 38:1 (1983), 182–184 | DOI | MR | Zbl

[5] Y. Félix and A. Murillo, “The homology of the lamplighter Lie algebra”, Algebra Logic, 60:6 (2022), 425–432 | DOI | MR | Zbl

[6] Félix Y., Murillo A., “Homology of the completion of a Lie algebra”, Proc. Amer. Math. Soc., 150:1 (2022), 95–103 | DOI | MR | Zbl

[7] Fialowski A., Millionschikov D., “Cohomology of graded Lie algebras of maximal class”, J. Algebra, 296:1 (2006), 157–176 | DOI | MR | Zbl

[8] D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, New York, 1986 | MR | Zbl

[9] L. V. Goncharova, “The cohomologies of Lie algebras of formal vector fields on the line”, Funct. Anal. Appl., 7:2 (1973), 91–97 | DOI | MR | MR | Zbl

[10] Ivanov S.O., Mikhailov R., Zaikovskii A., “Homological properties of parafree Lie algebras”, J. Algebra, 560 (2020), 1092–1106 | DOI | MR | Zbl

[11] Limonchenko I., Millionshchikov D., “Higher order Massey products and applications”, Topology, geometry, and dynamics: V. A. Rokhlin–memorial, Contemp. Math., 772, Amer. Math. Soc., Providence, RI, 2021, 209–240 | DOI | MR | Zbl

[12] A. I. Malcev, “On a class of homogeneous spaces”, Am. Math. Soc. Transl., 1951, no. 39 | MR | Zbl

[13] Maltsev A.I., “Nilpotentnye gruppy bez krucheniya”, Izv. AN SSSR. Ser. mat., 13:3 (1949), 201–212 | Zbl

[14] Mikhalev A.A., Umirbaev U.U., Zolotykh A.A., “A Lie algebra with cohomological dimension one over a field of prime characteristic is not necessarily free”, First international Tainan–Moscow algebra workshop (Proc. Int. Conf., Tainan, 1994), ed. by Y. Fong et al., de Gruyter, Berlin, 1996, 257–264 | MR | Zbl

[15] Millionschikov D., “Massey products in graded Lie algebra cohomology”, Contemporary geometry and related topics (Proc. Conf., Belgrade, 2005), ed. by N. Bokan et al., Univ. Belgrade, Belgrade, 2006, 353–377 | MR | Zbl

[16] D. V. Millionshchikov, “Naturally graded Lie algebras of slow growth”, Sb. Math., 210:6 (2019), 862–909 | DOI | MR | Zbl

[17] D. V. Millionshchikov and A. Fialowski, “Cohomology of certain $\mathbb N$-graded Lie algebras”, Russ. Math. Surv., 59:6 (2004), 1210–1211 | DOI | MR | Zbl

[18] Quillen D., “Rational homotopy theory”, Ann. Math. Ser. 2, 90:2 (1969), 205–295 | DOI | MR | Zbl

[19] Shalev A., Zelmanov E.I., “Narrow algebras and groups”, J. Math. Sci., 93:6 (1999), 951–963 | DOI | MR | Zbl

[20] Stallings J.R., “On torsion-free groups with infinitely many ends”, Ann. Math. Ser. 2, 88:2 (1968), 312–334 | DOI | MR | Zbl

[21] Swan R.G., “Groups of cohomological dimension one”, J. Algebra, 12:4 (1969), 585–610 | DOI | MR | Zbl

[22] Taback J., “Lamplighter groups”, Office hours with a geometric group theorist, ed. by M. Clay, D. Margalit, Princeton Univ. Press, Princeton, NJ, 2017, 310–330 | DOI | MR | Zbl

[23] Vergne M., “Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes”, Bull. Soc. math. France, 98 (1970), 81–116 | DOI | MR | Zbl

[24] A. A. Zolotykh, A. A. Mikhalev, and U. U. Umirbaev, “An example of a non-free Lie algebra of cohomological dimension 1”, Russ. Math. Surv., 49:1 (1994), 254 | DOI | MR | Zbl

[25] Zusmanovich P., “On Lie $p$-algebras of cohomological dimension one”, Indag. math., 30:2 (2019), 288–299 | DOI | MR | Zbl