Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_318_a7, author = {Nikolai Yu. Erokhovets}, title = {Cohomological {Rigidity} of {Families} of {Manifolds} {Associated} with {Ideal} {Right-Angled} {Hyperbolic} {3-Polytopes}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {99--138}, publisher = {mathdoc}, volume = {318}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_318_a7/} }
TY - JOUR AU - Nikolai Yu. Erokhovets TI - Cohomological Rigidity of Families of Manifolds Associated with Ideal Right-Angled Hyperbolic 3-Polytopes JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 99 EP - 138 VL - 318 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_318_a7/ LA - ru ID - TM_2022_318_a7 ER -
%0 Journal Article %A Nikolai Yu. Erokhovets %T Cohomological Rigidity of Families of Manifolds Associated with Ideal Right-Angled Hyperbolic 3-Polytopes %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 99-138 %V 318 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2022_318_a7/ %G ru %F TM_2022_318_a7
Nikolai Yu. Erokhovets. Cohomological Rigidity of Families of Manifolds Associated with Ideal Right-Angled Hyperbolic 3-Polytopes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 99-138. http://geodesic.mathdoc.fr/item/TM_2022_318_a7/