Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_318_a7, author = {Nikolai Yu. Erokhovets}, title = {Cohomological {Rigidity} of {Families} of {Manifolds} {Associated} with {Ideal} {Right-Angled} {Hyperbolic} {3-Polytopes}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {99--138}, publisher = {mathdoc}, volume = {318}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_318_a7/} }
TY - JOUR AU - Nikolai Yu. Erokhovets TI - Cohomological Rigidity of Families of Manifolds Associated with Ideal Right-Angled Hyperbolic 3-Polytopes JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 99 EP - 138 VL - 318 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_318_a7/ LA - ru ID - TM_2022_318_a7 ER -
%0 Journal Article %A Nikolai Yu. Erokhovets %T Cohomological Rigidity of Families of Manifolds Associated with Ideal Right-Angled Hyperbolic 3-Polytopes %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 99-138 %V 318 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2022_318_a7/ %G ru %F TM_2022_318_a7
Nikolai Yu. Erokhovets. Cohomological Rigidity of Families of Manifolds Associated with Ideal Right-Angled Hyperbolic 3-Polytopes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 99-138. http://geodesic.mathdoc.fr/item/TM_2022_318_a7/
[1] E. M. Andreev, “On convex polyhedra in Lobačevskiĭ spaces”, Math. USSR, Sb., 10:3 (1970), 413–440 | DOI | MR | Zbl
[2] E. M. Andreev, “On convex polyhedra of finite volume in Lobačevskiĭ space”, Math. USSR, Sb., 12:2 (1970), 255–259 | DOI | MR | Zbl
[3] Barnette D., “On generating planar graphs”, Discrete Math., 7:3–4 (1974), 199–208 | DOI | MR | Zbl
[4] Birkhoff G.D., “The reducibility of maps”, Amer. J. Math., 35:2 (1913), 115–128 | DOI | MR | Zbl
[5] Bobenko A.I., Springborn B.A., “Variational principles for circle patterns and Koebe's theorem”, Trans. Amer. Math. Soc., 356:2 (2004), 659–689 | DOI | MR | Zbl
[6] Bosio F., Two transformations of simple polytopes preserving moment–angle manifolds, E-print, 2017, arXiv: 1708.00399v1 [math.GT]
[7] Bosio F., Meersseman L., “Real quadrics in $\mathbf C^n$, complex manifolds and convex polytopes”, Acta math., 197:1 (2006), 53–127 | DOI | MR | Zbl
[8] Brinkmann G., Greenberg S., Greenhill C., McKay B.D., Thomas R., Wollan P., “Generation of simple quadrangulations of the sphere”, Discrete Math., 305:1–3 (2005), 33–54 | DOI | MR | Zbl
[9] V. M. Buchstaber and N. Yu. Erokhovets, “Truncations of simple polytopes and applications”, Proc. Steklov Inst. Math., 289 (2015), 104–133 | DOI | MR | Zbl
[10] Buchstaber V.M., Erokhovets N.Yu., “Fullerenes, polytopes and toric topology”, Combinatorial and toric homotopy: Introductory lectures, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singapore, 35, World Scientific, Hackensack, NJ, 2017, 67–178 ; arXiv: 1609.02949 [math.AT] | MR
[11] V. M. Buchstaber and N. Yu. Erokhovets, “Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes”, Izv. Math., 81:5 (2017), 901–972 | DOI | MR | Zbl
[12] V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, and S. Park, “Cohomological rigidity of manifolds defined by 3-dimensional polytopes”, Russ. Math. Surv., 72:2 (2017), 199–256 | DOI | MR | Zbl
[13] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl
[14] V. M. Buchstaber and T. E. Panov, “On manifolds defined by 4-colourings of simple 3-polytopes”, Russ. Math. Surv., 71:6 (2016), 1137–1139 | DOI | MR | Zbl
[15] Cho Y., Lee E., Masuda M., Park S., Unique toric structure on a Fano Bott manifold, E-print, 2020, arXiv: 2005.02740v1 [math.SG]
[16] Choi S., Kim J.S., “Combinatorial rigidity of 3-dimensional simplicial polytopes”, Int. Math. Res. Not., 2011:8 (2011), 1935–1951 | MR | Zbl
[17] Choi S., Panov T., Suh D.Y., “Toric cohomological rigidity of simple convex polytopes”, J. London Math. Soc. Ser. 2, 82:2 (2010), 343–360 | DOI | MR | Zbl
[18] Choi S., Park K., “Example of $C$-rigid polytopes which are not $B$-rigid”, Math. Slovaca, 69:2 (2019), 437–448 | DOI | MR | Zbl
[19] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[20] Davis M.W., Okun B., “Vanishing theorems and conjectures for the 2-homology of right-angled Coxeter groups”, Geom. Topol., 5 (2001), 7–74 | DOI | MR | Zbl
[21] Došlić T., “On lower bounds of number of perfect matchings in fullerene graphs”, J. Math. Chem., 24:4 (1998), 359–364 | DOI | MR
[22] Došlić T., “Cyclical edge-connectivity of fullerene graphs and $(k,6)$-cages”, J. Math. Chem., 33:2 (2003), 103–112 | DOI | MR
[23] N. Yu. Erokhovets, “Three-dimensional right-angled polytopes of finite volume in the Lobachevsky space: Combinatorics and constructions”, Proc. Steklov Inst. Math., 305 (2019), 78–134 | DOI | MR | Zbl
[24] Erokhovets N., $B$-rigidity of the property to be an almost Pogorelov polytope, E-print, 2020, arXiv: 2004.04873v5 [math.AT] | MR
[25] Erokhovets N., $B$-rigidity of ideal almost Pogorelov polytopes, E-print, 2020, arXiv: 2005.07665v3 [math.AT]
[26] Erokhovets N.Yu., “$B$-rigidity of the property to be an almost Pogorelov polytope”, Topology, geometry, and dynamics: V.A. Rokhlin–memorial, Contemp. Math., 772, Amer. Math. Soc., Providence, RI, 2021, 107–122 | DOI | MR | Zbl
[27] Erokhovets N.Yu., “Kanonicheskaya geometrizatsiya orientiruemykh trekhmernykh mnogoobrazii, opredelyaemykh vektornymi raskraskami trekhmernykh mnogogrannikov”, Mat. sb., 213:6 (2022), 21–70 ; arXiv: 2011.11628v2 [math.GT] | MR
[28] Fan F., Ma J., Wang X., $B$-rigidity of flag 2-spheres without 4-belt, E-print, 2015, arXiv: 1511.03624 [math.AT]
[29] Fan F., Ma J., Wang X., Some rigidity problems in toric topology. I, E-print, 2020, arXiv: 2004.03362v2 [math.AT]
[30] Fan F., Wang X., On the cohomology of moment–angle complexes associated to Gorenstein* complexes, E-print, 2015, arXiv: 1508.00159v1 [math.AT]
[31] I. V. Izmestiev, “Three-dimensional manifolds defined by coloring a simple polytope”, Math. Notes, 69:3 (2001), 340–346 | DOI | MR | Zbl
[32] M. Joswig, “The group of projectivities and colouring of the facets of a simple polytope”, Russ. Math. Surv., 56:3 (2001), 584–585 | DOI | MR | Zbl
[33] A. D. Mednykh, “Automorphism groups of three-dimensional hyperbolic manifolds”, Sov. Math., Dokl., 32 (1985), 633–636 | MR | Zbl
[34] Mednykh A.D., Vesnin A.Yu., “On three-dimensional hyperbolic manifolds of Löbell type”, Complex analysis and applications (Proc. Conf., Varna, 1985), ed. by L. Iliev et al., Publ. House Bulg. Acad. Sci., Sofia, 1986, 440–446 | MR
[35] A. V. Pogorelov, “A regular partition of Lobachevskian space”, Math. Notes, 1:1 (1967), 3–5 | DOI | MR | Zbl
[36] Rivin I., “Euclidean structures on simplicial surfaces and hyperbolic volume”, Ann. Math. Ser. 2, 139:3 (1994), 553–580 | DOI | MR | Zbl
[37] Rivin I., “A characterization of ideal polyhedra in hyperbolic 3-space”, Ann. Math. Ser. 2, 143:1 (1996), 51–70 | DOI | MR | Zbl
[38] Schramm O., “How to cage an egg”, Invent. math., 107:3 (1992), 543–560 | DOI | MR | Zbl
[39] Thurston W.P., “Shapes of polyhedra and triangulations of the sphere”, The Epstein birthday schrift, Geom. Topol. Monogr., 1, Univ. Warwick, Warwick, 1998, 511–549 | DOI | MR | Zbl
[40] Thurston W.P., The geometry and topology of three-manifolds (electron. vers. 1.1), MSRI, Berkeley, CA, 2002 http://www.msri.org/publications/books/gt3m/
[41] A. Yu. Vesnin, “Three-dimensional hyperbolic manifolds of Löbell type”, Sib. Math. J., 28:5 (1987), 731–734 | DOI | MR | Zbl
[42] A. Yu. Vesnin, “Right-angled polyhedra and hyperbolic 3-manifolds”, Russ. Math. Surv., 72:2 (2017), 335–374 | DOI | MR | Zbl
[43] Vesnin A.Yu., Egorov A.A., “Ideal right-angled polyhedra in Lobachevsky space”, Chebyshev. sb., 21:2 (2020), 65–83 | MR | Zbl
[44] E. B. Vinberg and O. V. Shvartsman, “Discrete groups of motions of spaces of constant curvature”, Geometry II: Spaces of Constant Curvature, Encycl. Math. Sci., 29, Springer, Berlin, 1993, 139–248 ; Tsigler G.M., Teoriya mnogogrannikov, MTsNMO, M., 2014 | MR
[45] G. M. Ziegler, Lectures on Polytopes, Grad. Texts Math., 152, Springer, Berlin, 1995 | DOI | MR | Zbl