Delone Sets and Tilings: Local Approach
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 73-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present new results in the local theory of Delone sets, regular systems, and isogonal tilings. In particular, we prove a local criterion for isogonal tilings of the Euclidean space. This criterion is then applied to the study of $2R$-isometric Delone sets, where $R$ is the covering radius for these sets. For regular systems in the plane we establish the exact value $\widehat {\rho }_2=4R$ of the regularity radius. We prove that in any cell of the Delone tiling in an arbitrary Delone set in the plane, there is a vertex at which the local group is crystallographic. Hence, the subset of points with local crystallographic groups in a Delone set in the plane is itself a Delone set with covering radius at most $2R$.
@article{TM_2022_318_a6,
     author = {N. P. Dolbilin and M. I. Shtogrin},
     title = {Delone {Sets} and {Tilings:} {Local} {Approach}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {73--98},
     publisher = {mathdoc},
     volume = {318},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_318_a6/}
}
TY  - JOUR
AU  - N. P. Dolbilin
AU  - M. I. Shtogrin
TI  - Delone Sets and Tilings: Local Approach
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 73
EP  - 98
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_318_a6/
LA  - ru
ID  - TM_2022_318_a6
ER  - 
%0 Journal Article
%A N. P. Dolbilin
%A M. I. Shtogrin
%T Delone Sets and Tilings: Local Approach
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 73-98
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_318_a6/
%G ru
%F TM_2022_318_a6
N. P. Dolbilin; M. I. Shtogrin. Delone Sets and Tilings: Local Approach. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 73-98. http://geodesic.mathdoc.fr/item/TM_2022_318_a6/

[1] Baburin I.A., Bouniaev M., Dolbilin N., Erokhovets N.Yu., Garber A., Krivovichev S.V., Schulte E., “On the origin of crystallinity: A lower bound for the regularity radius of Delone sets”, Acta crystallogr. Sect. A, 74:6 (2018), 616–629 | DOI | MR | Zbl

[2] Delaunay B., “Sur la sphère vide: A la mémoire de Georges Voronoï”, Izv. AN SSSR. Otd. mat. i estestv. nauk, 1934, no. 6, 793–800

[3] Delone B.N., “Geometriya polozhitelnykh kvadratichnykh form”, UMN, 1937, no. 3, 16–62

[4] B. N. Delone, N. P. Dolbilin, and M. I. Shtogrin, “Combinatorial and metric theory of planigons”, Proc. Steklov Inst. Math., 148 (1980), 111–141 | MR | Zbl | Zbl

[5] B. N. Delone, N. P. Dolbilin, M. I. Shtogrin, and R. V. Galiulin, “A local criterion for regularity of a system of points”, Sov. Math., Dokl., 17:2 (1976), 319–322 | MR | Zbl

[6] Dolbilin N.P., “Kriterii kristalla i lokalno antipodalnye mnozhestva Delone”, Vestn. ChelGU, 2015, no. 3, 6–17

[7] N. P. Dolbilin, “Delone sets in $\mathbb R^3$ with $2R$-regularity conditions”, Proc. Steklov Inst. Math., 302 (2018), 161–185 | DOI | MR | Zbl

[8] Dolbilin N.P., “Ot lokalnoi identichnosti k globalnoi simmetrii”, Mater. XIII Mezhdunar. sem. “Diskretnaya matematika i ee prilozheniya” im. akad. O.B. Lupanova, Izd-vo mekh.-mat. f-ta MGU, M., 2019, 13–22

[9] Dolbilin N.P., “Local groups in Delone sets”, Numerical geometry, grid generation and scientific computing, Lect. Notes Comput. Sci. Eng., 143, Springer, Cham, 2021, 3–11 | DOI | MR | Zbl

[10] Dolbilin N., Garber A., Leopold U., Schulte E., Senechal M., “On the regularity radius of Delone sets in $\mathbb R^3$”, Discrete Comput. Geom., 66 (2021), 996–1024 | DOI | MR | Zbl

[11] N. P. Dolbilin and A. N. Magazinov, “Uniqueness theorem for locally antipodal Delaunay sets”, Proc. Steklov Inst. Math., 294 (2016), 215–221 | DOI | MR | Zbl

[12] Dolbilin N., Schattschneider D., “The local theorem for tilings”, Quasicrystals and discrete geometry (Proc. 1995 Fall Programme Fields Inst., Toronto, 1995), Fields Inst. Monogr., 10, Amer. Math. Soc., Providence, RI, 1998, 193–199 | MR | Zbl

[13] N. P. Dolbilin and M. I. Shtogrin, “Local groups in Delone sets: A conjecture and results”, Russ. Math. Surv., 76:6 (2021), 1137–1139 | DOI | MR | Zbl

[14] N. P. Dolbilin and M. I. Shtogrin, “Crystallographic properties of local groups of a Delone set in a Euclidean plane”, Comput. Math. Math. Phys., 62:8 (2022), 1265–1274 ; Gilbert D., Kon-Fossen S.E., Naglyadnaya geometriya, Nauka, M., 1981 | DOI | MR | Zbl

[15] D. Hilbert and S. Cohn-Vossen, Anschauliche Geometrie, J. Springer, Berlin, 1932 | MR

[16] Laves F., “Ebenenteilung und Koordinationszahl”, Z. Kristallogr., 78 (1931), 208–241 | DOI

[17] Shtogrin M.I., “Ob ogranichenii poryadka osi pauchka v lokalno pravilnoi sisteme Delone”, Geometry, topology, algebra and number theory, applications: Int. Conf. dedicated to the 120th anniversary of Boris Delone, Moscow, 2010: Abstracts, Steklov Math. Inst., Moscow, 2010, 168–169

[18] Shubnikov A., “K voprosu o stroenii kristallov. I”, Izv. Imp. akad. nauk, 10:9 (1916), 755–779