Delone Sets and Tilings: Local Approach
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 73-98

Voir la notice de l'article provenant de la source Math-Net.Ru

We present new results in the local theory of Delone sets, regular systems, and isogonal tilings. In particular, we prove a local criterion for isogonal tilings of the Euclidean space. This criterion is then applied to the study of $2R$-isometric Delone sets, where $R$ is the covering radius for these sets. For regular systems in the plane we establish the exact value $\widehat {\rho }_2=4R$ of the regularity radius. We prove that in any cell of the Delone tiling in an arbitrary Delone set in the plane, there is a vertex at which the local group is crystallographic. Hence, the subset of points with local crystallographic groups in a Delone set in the plane is itself a Delone set with covering radius at most $2R$.
@article{TM_2022_318_a6,
     author = {N. P. Dolbilin and M. I. Shtogrin},
     title = {Delone {Sets} and {Tilings:} {Local} {Approach}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {73--98},
     publisher = {mathdoc},
     volume = {318},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_318_a6/}
}
TY  - JOUR
AU  - N. P. Dolbilin
AU  - M. I. Shtogrin
TI  - Delone Sets and Tilings: Local Approach
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 73
EP  - 98
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_318_a6/
LA  - ru
ID  - TM_2022_318_a6
ER  - 
%0 Journal Article
%A N. P. Dolbilin
%A M. I. Shtogrin
%T Delone Sets and Tilings: Local Approach
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 73-98
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_318_a6/
%G ru
%F TM_2022_318_a6
N. P. Dolbilin; M. I. Shtogrin. Delone Sets and Tilings: Local Approach. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 73-98. http://geodesic.mathdoc.fr/item/TM_2022_318_a6/