Orbits of the Automorphism Group of Horospherical Varieties, and Divisor Class Group
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 43-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2013 Bazhov proved a criterion for two points on a complete toric variety to lie in the same orbit of the neutral component of the automorphism group. This criterion is formulated in terms of the divisor class group. The same year Arzhantsev and Bazhov obtained a similar criterion for affine toric varieties. We prove a necessary condition similar to this criterion in the cases of affine and projective horospherical varieties.
Keywords: horospherical variety, toric variety, divisor class group, locally nilpotent derivation.
Mots-clés : automorphism
@article{TM_2022_318_a3,
     author = {Sergey A. Gaifullin},
     title = {Orbits of the {Automorphism} {Group} of {Horospherical} {Varieties,} and {Divisor} {Class} {Group}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {43--50},
     publisher = {mathdoc},
     volume = {318},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_318_a3/}
}
TY  - JOUR
AU  - Sergey A. Gaifullin
TI  - Orbits of the Automorphism Group of Horospherical Varieties, and Divisor Class Group
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 43
EP  - 50
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_318_a3/
LA  - ru
ID  - TM_2022_318_a3
ER  - 
%0 Journal Article
%A Sergey A. Gaifullin
%T Orbits of the Automorphism Group of Horospherical Varieties, and Divisor Class Group
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 43-50
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_318_a3/
%G ru
%F TM_2022_318_a3
Sergey A. Gaifullin. Orbits of the Automorphism Group of Horospherical Varieties, and Divisor Class Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 43-50. http://geodesic.mathdoc.fr/item/TM_2022_318_a3/

[1] Arzhantsev I., Bazhov I., “On orbits of the automorphism group on an affine toric variety”, Cent. Eur. J. Math., 11:10 (2013), 1713–1724 | MR | Zbl

[2] Bazhov I., “On orbits of the automorphism group on a complete toric variety”, Beitr. Algebra Geom., 54:2 (2013), 471–481 | DOI | MR | Zbl

[3] Borovik V., Gaifullin S., Shafarevich A., On orbits of automorphism groups on horospherical varieties, E-print, 2021, arXiv: 2105.05897 [math.AG]

[4] Cox D.A., Little J.B., Schenck H.K., Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011 | DOI | MR | Zbl

[5] Freudenburg G., Algebraic theory of locally nilpotent derivations, Encycl. Math. Sci., 136, Springer, Berlin, 2006 | MR | Zbl

[6] Fulton W., Introduction to toric varieties, Ann. Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[7] Knop F., Kraft H., Luna D., Vust T., “Local properties of algebraic group actions”, Algebraische Transformationsgruppen und Invariantentheorie, DMV Semin., 13, Birkhäuser, Basel, 1989, 63–75 | MR

[8] Ramanujam C.P., “A note on automorphism groups of algebraic varieties”, Math. Ann., 156 (1964), 25–33 | DOI | MR | Zbl

[9] I. R. Šafarevič, “On some infinite-dimensional groups. II”, Math. USSR, Izv., 18:1 (1982), 185–194 | DOI | MR | Zbl

[10] Timashev D.A., Homogeneous spaces and equivariant embeddings, Encycl. Math. Sci., 138, Springer, Berlin, 2011 | MR | Zbl

[11] È. B. Vinberg and V. L. Popov, “On a class of quasihomogeneous affine varieties”, Math. USSR, Izv., 6:4 (1972), 743–758 | DOI | MR | Zbl