Toric Surfaces with Reflection Symmetries
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 177-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $W$ be a reflection group in a plane and $P$ a rational polygon that is invariant under the $W$-action. The action of $W$ on $P$ induces a $W$-action on the toric variety $X_P$ associated with $P$. In this paper, we study the $W$-representation on the cohomology $H^*(X_P)$ and show that the invariant subring $H^*(X_P)^W$ is isomorphic to the cohomology ring of the toric variety associated with the fundamental region $P/W$. As an example, we provide an explicit description of the main result for the case of the toric variety associated with the fan of Weyl chambers of type $G_2$.
Keywords: toric variety, toric surface, reflection, singular cohomology.
@article{TM_2022_318_a10,
     author = {Jongbaek Song},
     title = {Toric {Surfaces} with {Reflection} {Symmetries}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {177--192},
     publisher = {mathdoc},
     volume = {318},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_318_a10/}
}
TY  - JOUR
AU  - Jongbaek Song
TI  - Toric Surfaces with Reflection Symmetries
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 177
EP  - 192
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_318_a10/
LA  - ru
ID  - TM_2022_318_a10
ER  - 
%0 Journal Article
%A Jongbaek Song
%T Toric Surfaces with Reflection Symmetries
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 177-192
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_318_a10/
%G ru
%F TM_2022_318_a10
Jongbaek Song. Toric Surfaces with Reflection Symmetries. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 177-192. http://geodesic.mathdoc.fr/item/TM_2022_318_a10/

[1] Abe H., “Young diagrams and intersection numbers for toric manifolds associated with Weyl chambers”, Electron. J. Comb., 22:2 (2015), P2.4 | MR | Zbl

[2] Abe H., Harada M., Horiguchi T., Masuda M., “The cohomology rings of regular nilpotent Hessenberg varieties in Lie type A”, Int. Math. Res. Not., 2019:17 (2019), 5316–5388 | DOI | MR | Zbl

[3] Batyrev V., Blume M., “The functor of toric varieties associated with Weyl chambers and Losev–Manin moduli spaces”, Tohoku Math. J. Ser. 2, 63:4 (2011), 581–604 | MR | Zbl

[4] Blume M., “Toric orbifolds associated to Cartan matrices”, Ann. Inst. Fourier, 65:2 (2015), 863–901 | DOI | MR | Zbl

[5] Borel A., Seminar on transformation groups, With contributions by G. Bredon, E.E. Floyd, D. Montgomery, R. Palais, Ann. Math. Stud., 46, Princeton Univ. Press, Princeton, NJ, 1960 | MR | Zbl

[6] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[7] Cox D.A., Little J.B., Schenck H.K., Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011 | DOI | MR | Zbl

[8] V. I. Danilov, “The geometry of toric varieties”, Russ. Math. Surv., 33:2 (1978), 97–154 | DOI | MR | Zbl

[9] De Mari F., Procesi C., Shayman M.A., “Hessenberg varieties”, Trans. Amer. Math. Soc., 332:2 (1992), 529–534 | DOI | MR | Zbl

[10] Dolgachev I., Lunts V., “A character formula for the representation of a Weyl group in the cohomology of the associated toric variety”, J. Algebra, 168:3 (1994), 741–772 | DOI | MR | Zbl

[11] Horiguchi T., Masuda M., Shareshian J., Song J., Toric orbifolds associated with partitioned weight polytopes in classical types, E-print, 2021, arXiv: 2105.05453 [math.AG]

[12] Huh J., Rota's conjecture and positivity of algebraic cycles in permutohedral varieties, PhD Thesis, Univ. Michigan, Ann Arbor, MI, 2014 | MR

[13] Jurkiewicz J., “Chow ring of projective nonsingular torus embedding”, Colloq. math., 43:2 (1980), 261–270 | DOI | MR | Zbl

[14] A. A. Klyachko, “Orbits of a maximal torus on a flag space”, Funct. Anal. Appl., 19:1 (1985), 65–66 | DOI | MR | Zbl

[15] Postnikov A., “Permutohedra, associahedra, and beyond”, Int. Math. Res. Not., 2009:6 (2009), 1026–1106 | DOI | MR | Zbl

[16] Procesi C., “The toric variety associated to Weyl chambers”, Mots. Mélanges offerts à M.-P. Schützenberger, Langue, raisonnement, calcul, Hermès, Paris, 1990, 153–161 | MR | Zbl

[17] Stembridge J.R., “Some permutation representations of Weyl groups associated with the cohomology of toric varieties”, Adv. Math., 106:2 (1994), 244–301 | DOI | MR | Zbl