Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_318_a10, author = {Jongbaek Song}, title = {Toric {Surfaces} with {Reflection} {Symmetries}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {177--192}, publisher = {mathdoc}, volume = {318}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_318_a10/} }
Jongbaek Song. Toric Surfaces with Reflection Symmetries. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 177-192. http://geodesic.mathdoc.fr/item/TM_2022_318_a10/
[1] Abe H., “Young diagrams and intersection numbers for toric manifolds associated with Weyl chambers”, Electron. J. Comb., 22:2 (2015), P2.4 | MR | Zbl
[2] Abe H., Harada M., Horiguchi T., Masuda M., “The cohomology rings of regular nilpotent Hessenberg varieties in Lie type A”, Int. Math. Res. Not., 2019:17 (2019), 5316–5388 | DOI | MR | Zbl
[3] Batyrev V., Blume M., “The functor of toric varieties associated with Weyl chambers and Losev–Manin moduli spaces”, Tohoku Math. J. Ser. 2, 63:4 (2011), 581–604 | MR | Zbl
[4] Blume M., “Toric orbifolds associated to Cartan matrices”, Ann. Inst. Fourier, 65:2 (2015), 863–901 | DOI | MR | Zbl
[5] Borel A., Seminar on transformation groups, With contributions by G. Bredon, E.E. Floyd, D. Montgomery, R. Palais, Ann. Math. Stud., 46, Princeton Univ. Press, Princeton, NJ, 1960 | MR | Zbl
[6] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl
[7] Cox D.A., Little J.B., Schenck H.K., Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011 | DOI | MR | Zbl
[8] V. I. Danilov, “The geometry of toric varieties”, Russ. Math. Surv., 33:2 (1978), 97–154 | DOI | MR | Zbl
[9] De Mari F., Procesi C., Shayman M.A., “Hessenberg varieties”, Trans. Amer. Math. Soc., 332:2 (1992), 529–534 | DOI | MR | Zbl
[10] Dolgachev I., Lunts V., “A character formula for the representation of a Weyl group in the cohomology of the associated toric variety”, J. Algebra, 168:3 (1994), 741–772 | DOI | MR | Zbl
[11] Horiguchi T., Masuda M., Shareshian J., Song J., Toric orbifolds associated with partitioned weight polytopes in classical types, E-print, 2021, arXiv: 2105.05453 [math.AG]
[12] Huh J., Rota's conjecture and positivity of algebraic cycles in permutohedral varieties, PhD Thesis, Univ. Michigan, Ann Arbor, MI, 2014 | MR
[13] Jurkiewicz J., “Chow ring of projective nonsingular torus embedding”, Colloq. math., 43:2 (1980), 261–270 | DOI | MR | Zbl
[14] A. A. Klyachko, “Orbits of a maximal torus on a flag space”, Funct. Anal. Appl., 19:1 (1985), 65–66 | DOI | MR | Zbl
[15] Postnikov A., “Permutohedra, associahedra, and beyond”, Int. Math. Res. Not., 2009:6 (2009), 1026–1106 | DOI | MR | Zbl
[16] Procesi C., “The toric variety associated to Weyl chambers”, Mots. Mélanges offerts à M.-P. Schützenberger, Langue, raisonnement, calcul, Hermès, Paris, 1990, 153–161 | MR | Zbl
[17] Stembridge J.R., “Some permutation representations of Weyl groups associated with the cohomology of toric varieties”, Adv. Math., 106:2 (1994), 244–301 | DOI | MR | Zbl