Homology of the $MSU$ Spectrum
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 5-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a complete proof of the Novikov isomorphism $\varOmega ^{{SU}}\otimes \mathbb Z \bigl [\tfrac 12\bigr ]\cong \mathbb Z\bigl [\tfrac 12\bigr ] [y_2,y_3,\ldots ]$, $\deg y_i=2i$, where $\varOmega ^{{SU}}$ is the ${SU}$-bordism ring. The proof uses the Adams spectral sequence and a description of the comodule structure of $H_{\scriptscriptstyle\bullet}({M\kern -1pt SU};\mathbb F_p)$ over the dual Steenrod algebra $\mathfrak A_p^*$ with odd prime $p$, which was also missing in the literature.
@article{TM_2022_318_a0,
     author = {Semyon A. Abramyan},
     title = {Homology of the $MSU$ {Spectrum}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {318},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_318_a0/}
}
TY  - JOUR
AU  - Semyon A. Abramyan
TI  - Homology of the $MSU$ Spectrum
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 5
EP  - 16
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_318_a0/
LA  - ru
ID  - TM_2022_318_a0
ER  - 
%0 Journal Article
%A Semyon A. Abramyan
%T Homology of the $MSU$ Spectrum
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 5-16
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_318_a0/
%G ru
%F TM_2022_318_a0
Semyon A. Abramyan. Homology of the $MSU$ Spectrum. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 5-16. http://geodesic.mathdoc.fr/item/TM_2022_318_a0/

[1] Adams J.F., “On the structure and applications of the Steenrod algebra”, Comment. math. Helv., 32 (1958), 180–214 | DOI | MR | Zbl

[2] Adams J.F., “Primitive elements in the $K$-theory of BSU”, Q. J. Math. Oxford. Ser. 2, 27 (1976), 253–262 | DOI | MR | Zbl

[3] Atiyah M.F., “Bordism and cobordism”, Proc. Cambridge Philos. Soc., 57 (1961), 200–208 | DOI | MR | Zbl

[4] Averbukh B.G., “Algebraicheskoe stroenie grupp vnutrennikh gomologii”, DAN SSSR, 125:1 (1959), 11–14 | Zbl

[5] Botvinnik B.I., Manifolds with singularities and the Adams–Novikov spectral sequence, LMS Lect. Note Ser., 170, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[6] Brown E.H., Jr., Davis D.M., Peterson F.P., “The homology of $BO$ and some results about the Steenrod algebra”, Math. Proc. Cambridge Philos. Soc., 81 (1977), 393–398 | DOI | MR | Zbl

[7] Conner P.E., Floyd E.E., Differentiable periodic maps, Springer, Berlin, 1964 | MR | Zbl

[8] Conner P.E., Floyd E.E., Torsion in SU-bordism, Mem. AMS, 60, Amer. Math. Soc., Providence, RI, 1966 | MR | Zbl

[9] Kochman S.O., “Polynomial generators for $H_*(BSU)$ and $H_*(BSO,Z_2)$”, Proc. Amer. Math. Soc., 84 (1982), 149–154 | MR | Zbl

[10] I. Yu. Limonchenko, T. E. Panov, and G. S. Chernykh, “$SU$-bordism: Structure results and geometric representatives”, Russ. Math. Surv., 74:3 (2019), 461–524 | DOI | MR | Zbl

[11] Liulevicius A., “Notes on homotopy of Thom spectra”, Amer. J. Math., 86 (1964), 1–16 | DOI | MR | Zbl

[12] Milnor J., “The Steenrod algebra and its dual”, Ann. Math. Ser. 2, 67:1 (1958), 205–295 | MR

[13] Milnor J., “On the cobordism ring $\Omega ^*$ and a complex analogue. I”, Amer. J. Math., 82 (1960), 505–521 | DOI | MR | Zbl

[14] Milnor J.W., Stasheff J.D., Characteristic classes, Ann. Math. Stud., 76, Princeton Univ. Press, Princetion, NJ, 1974 | MR | Zbl

[15] O. K. Mironov, “Existence of multiplicative structures in the theories of cobordism with singularities”, Math. USSR, Izv., 9:5 (1975), 1007–1034 | DOI | MR

[16] Mosher R.E., Tangora M.C., Cohomology operations and applications in homotopy theory, Harper and Row, New York, 1968 | MR | Zbl

[17] S. P. Novikov, “Some problems in the topology of manifolds connected with the theory of Thom spaces”, Sov. Math., Dokl., 1 (1960), 717–720 | MR | Zbl

[18] Novikov S.P., “Gomotopicheskie svoistva kompleksov Toma”, Mat. sb., 57:4 (1962), 407–442 ; http://www.mi.ras.ru/~snovikov/6.pdf | Zbl

[19] S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory”, Math. USSR, Izv., 1:4 (1967), 827–913 | DOI | MR | Zbl

[20] Pengelley D.J., “The mod two homology of $MSO$ and $MSU$ as $A$ comodule algebras, and the cobordism ring”, J. London Math. Soc. Ser. 2, 25 (1982), 467–472 | DOI | MR | Zbl

[21] L. S. Pontryagin, “Smooth manifolds and their applications in homotopy theory”, Am. Math. Soc. Transl., Ser. 2,, 11 (1959), 1–114 | MR | MR | Zbl

[22] Ravenel D.C., Complex cobordism and stable homotopy groups of spheres, Pure Appl. Math., 121, Acad. Press, Orlando, 1986 | MR | Zbl

[23] Rokhlin V.A., “Teoriya vnutrennikh gomologii”, UMN, 14:4 (1959), 3–20 | Zbl

[24] Steenrod N.E., Epstein D.B.A., Cohomology operations, Ann. Math. Stud., 50, Princeton Univ. Press, Princetion, NJ, 1962 | MR | Zbl

[25] Stong R.E., Notes on cobordism theory, Math. Notes, Princeton Univ. Press, Princetion, NJ, 1968 | MR | Zbl

[26] Switzer R.M., Algebraic topology—homotopy and homology, Grundl. Math. Wiss., 212, Springer, Berlin, 1975 | MR | Zbl

[27] Thom R., “Quelques propriétés globales des variétés différentiables”, Comment. math. Helv., 28 (1954), 17–86 | DOI | MR | Zbl

[28] Vershinin V.V., Cobordisms and spectral sequences, Transl. Math. Monogr., 130, Am. Math. Soc., Providence, RI, 1993 | MR | Zbl

[29] Wall C.T.C., “Determination of the cobordism ring”, Ann. Math. Ser. 2, 72 (1960), 292–311 | DOI | MR | Zbl

[30] Wall C.T.C., “Addendum to a paper of Conner and Floyd”, Proc. Cambridge Philos. Soc., 62 (1966), 171–175 | DOI | MR | Zbl