Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 198-209

Voir la notice de l'article provenant de la source Math-Net.Ru

A real toric manifold $X^{\Bbb R} $ is said to be cohomologically rigid over ${\Bbb Z} _2$ if every real toric manifold whose ${\Bbb Z} _2$-cohomology ring is isomorphic to that of $X^{\Bbb R} $ is actually diffeomorphic to $X^{\Bbb R} $. Not all real toric manifolds are cohomologically rigid over ${\Bbb Z} _2$. In this paper, we prove that the connected sum of three real projective spaces is cohomologically rigid over ${\Bbb Z} _2$.
Keywords: real toric variety, real toric manifold, cohomological rigidity.
@article{TM_2022_317_a9,
     author = {Suyoung Choi and Mathieu Vall\'ee},
     title = {Cohomological {Rigidity} of the {Connected} {Sum} of {Three} {Real} {Projective} {Spaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {198--209},
     publisher = {mathdoc},
     volume = {317},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a9/}
}
TY  - JOUR
AU  - Suyoung Choi
AU  - Mathieu Vallée
TI  - Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 198
EP  - 209
VL  - 317
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_317_a9/
LA  - ru
ID  - TM_2022_317_a9
ER  - 
%0 Journal Article
%A Suyoung Choi
%A Mathieu Vallée
%T Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 198-209
%V 317
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_317_a9/
%G ru
%F TM_2022_317_a9
Suyoung Choi; Mathieu Vallée. Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 198-209. http://geodesic.mathdoc.fr/item/TM_2022_317_a9/