Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 198-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

A real toric manifold $X^{\Bbb R} $ is said to be cohomologically rigid over ${\Bbb Z} _2$ if every real toric manifold whose ${\Bbb Z} _2$-cohomology ring is isomorphic to that of $X^{\Bbb R} $ is actually diffeomorphic to $X^{\Bbb R} $. Not all real toric manifolds are cohomologically rigid over ${\Bbb Z} _2$. In this paper, we prove that the connected sum of three real projective spaces is cohomologically rigid over ${\Bbb Z} _2$.
Keywords: real toric variety, real toric manifold, cohomological rigidity.
@article{TM_2022_317_a9,
     author = {Suyoung Choi and Mathieu Vall\'ee},
     title = {Cohomological {Rigidity} of the {Connected} {Sum} of {Three} {Real} {Projective} {Spaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {198--209},
     publisher = {mathdoc},
     volume = {317},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a9/}
}
TY  - JOUR
AU  - Suyoung Choi
AU  - Mathieu Vallée
TI  - Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 198
EP  - 209
VL  - 317
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_317_a9/
LA  - ru
ID  - TM_2022_317_a9
ER  - 
%0 Journal Article
%A Suyoung Choi
%A Mathieu Vallée
%T Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 198-209
%V 317
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_317_a9/
%G ru
%F TM_2022_317_a9
Suyoung Choi; Mathieu Vallée. Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 198-209. http://geodesic.mathdoc.fr/item/TM_2022_317_a9/

[1] Billera L.J., Lee C.W., “A proof of the sufficiency of McMullen's conditions for $f$-vectors of simplicial convex polytopes”, J. Comb. Theory. Ser. A, 31:3 (1981), 237–255 | MR | Zbl

[2] Bosio F., Meersseman L., “Real quadrics in $\mathbf C^n$, complex manifolds and convex polytopes”, Acta math., 197:1 (2006), 53–127 | MR | Zbl

[3] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl

[4] Choi S., Masuda M., Oum S., “Classification of real Bott manifolds and acyclic digraphs”, Trans. Amer. Math. Soc., 369:4 (2017), 2987–3011 | MR | Zbl

[5] S. Choi, M. Masuda, and D. Y. Suh, “Rigidity problems in toric topology: A survey”, Proc. Steklov Inst. Math., 275 (2011), 177–190 | MR | Zbl

[6] Choi S., Panov T., Suh D.Y., “Toric cohomological rigidity of simple convex polytopes”, J. London Math. Soc. Ser. 2, 82:2 (2010), 343–360 | MR | Zbl

[7] Choi S., Park H., “Wedge operations and torus symmetries”, Tohoku Math. J. Ser. 2, 68:1 (2016), 91–138 | MR | Zbl

[8] Choi S., Park H., “Wedge operations and torus symmetries. II”, Can. J. Math., 69:4 (2017), 767–789 | MR | Zbl

[9] Choi S., Park H., “Small covers over wedges of polygons”, J. Math. Soc. Japan, 71:3 (2019), 739–764 | MR | Zbl

[10] Choi S., Vallée M., An algorithmic strategy for finding characteristic maps over wedged simplicial complexes, E-print, 2021, arXiv: 2111.07298 [math.GT] | MR

[11] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | MR | Zbl

[12] N. Yu. Erokhovets, “Moment–angle manifolds of simple $n$-polytopes with $n+3$ facets”, Russ. Math. Surv., 66:5 (2011), 1006–1008 | MR | Zbl

[13] Ishida H., Fukukawa Y., Masuda M., “Topological toric manifolds”, Moscow Math. J., 13:1 (2013), 57–98 | MR | Zbl

[14] Kamishima Y., Masuda M., “Cohomological rigidity of real Bott manifolds”, Algebr. Geom. Topol., 9:4 (2009), 2479–2502 | MR | Zbl

[15] Mani P., “Spheres with few vertices”, J. Comb. Theory. Ser. A, 13:3 (1972), 346–352 | MR | Zbl

[16] M. Masuda, “Cohomological non-rigidity of generalized real Bott manifolds of height 2”, Proc. Steklov Inst. Math., 268 (2010), 242–247 | MR | Zbl

[17] M. Masuda and T. E. Panov, “Semifree circle actions, Bott towers and quasitoric manifolds”, Sb. Math., 199:8 (2008), 1201–1223 | MR | Zbl

[18] Masuda M., Suh D.Y., “Classification problems of toric manifolds via topology”, Toric topology: Proc. Int. Conf., Osaka, 2006, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 273–286 | MR | Zbl