Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_317_a9, author = {Suyoung Choi and Mathieu Vall\'ee}, title = {Cohomological {Rigidity} of the {Connected} {Sum} of {Three} {Real} {Projective} {Spaces}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {198--209}, publisher = {mathdoc}, volume = {317}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a9/} }
TY - JOUR AU - Suyoung Choi AU - Mathieu Vallée TI - Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 198 EP - 209 VL - 317 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_317_a9/ LA - ru ID - TM_2022_317_a9 ER -
Suyoung Choi; Mathieu Vallée. Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 198-209. http://geodesic.mathdoc.fr/item/TM_2022_317_a9/
[1] Billera L.J., Lee C.W., “A proof of the sufficiency of McMullen's conditions for $f$-vectors of simplicial convex polytopes”, J. Comb. Theory. Ser. A, 31:3 (1981), 237–255 | MR | Zbl
[2] Bosio F., Meersseman L., “Real quadrics in $\mathbf C^n$, complex manifolds and convex polytopes”, Acta math., 197:1 (2006), 53–127 | MR | Zbl
[3] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl
[4] Choi S., Masuda M., Oum S., “Classification of real Bott manifolds and acyclic digraphs”, Trans. Amer. Math. Soc., 369:4 (2017), 2987–3011 | MR | Zbl
[5] S. Choi, M. Masuda, and D. Y. Suh, “Rigidity problems in toric topology: A survey”, Proc. Steklov Inst. Math., 275 (2011), 177–190 | MR | Zbl
[6] Choi S., Panov T., Suh D.Y., “Toric cohomological rigidity of simple convex polytopes”, J. London Math. Soc. Ser. 2, 82:2 (2010), 343–360 | MR | Zbl
[7] Choi S., Park H., “Wedge operations and torus symmetries”, Tohoku Math. J. Ser. 2, 68:1 (2016), 91–138 | MR | Zbl
[8] Choi S., Park H., “Wedge operations and torus symmetries. II”, Can. J. Math., 69:4 (2017), 767–789 | MR | Zbl
[9] Choi S., Park H., “Small covers over wedges of polygons”, J. Math. Soc. Japan, 71:3 (2019), 739–764 | MR | Zbl
[10] Choi S., Vallée M., An algorithmic strategy for finding characteristic maps over wedged simplicial complexes, E-print, 2021, arXiv: 2111.07298 [math.GT] | MR
[11] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | MR | Zbl
[12] N. Yu. Erokhovets, “Moment–angle manifolds of simple $n$-polytopes with $n+3$ facets”, Russ. Math. Surv., 66:5 (2011), 1006–1008 | MR | Zbl
[13] Ishida H., Fukukawa Y., Masuda M., “Topological toric manifolds”, Moscow Math. J., 13:1 (2013), 57–98 | MR | Zbl
[14] Kamishima Y., Masuda M., “Cohomological rigidity of real Bott manifolds”, Algebr. Geom. Topol., 9:4 (2009), 2479–2502 | MR | Zbl
[15] Mani P., “Spheres with few vertices”, J. Comb. Theory. Ser. A, 13:3 (1972), 346–352 | MR | Zbl
[16] M. Masuda, “Cohomological non-rigidity of generalized real Bott manifolds of height 2”, Proc. Steklov Inst. Math., 268 (2010), 242–247 | MR | Zbl
[17] M. Masuda and T. E. Panov, “Semifree circle actions, Bott towers and quasitoric manifolds”, Sb. Math., 199:8 (2008), 1201–1223 | MR | Zbl
[18] Masuda M., Suh D.Y., “Classification problems of toric manifolds via topology”, Toric topology: Proc. Int. Conf., Osaka, 2006, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 273–286 | MR | Zbl