Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_317_a8, author = {JiSun Huh and Seonjeong Park}, title = {Toric {Varieties} of {Schr\"oder} {Type}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {179--197}, publisher = {mathdoc}, volume = {317}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a8/} }
JiSun Huh; Seonjeong Park. Toric Varieties of Schr\"oder Type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 179-197. http://geodesic.mathdoc.fr/item/TM_2022_317_a8/
[1] Batyrev V.V., “On the classification of toric Fano 4-folds”, J. Math. Sci., 94:1 (1999), 1021–1050 | MR | Zbl
[2] Cayley A., “On the analytical forms called trees. Part II”, Philos. Mag. Ser. 4, 18:121 (1859), 374–378 | MR
[3] Cayley A., “On the partitions of a polygon”, Proc. London Math. Soc. Ser. 1, 22 (1891), 237–262 | MR
[4] Choi S., “Classification of Bott manifolds up to dimension 8”, Proc. Edinburgh Math. Soc. Ser. 2, 58:3 (2015), 653–659 | MR | Zbl
[5] Choi S., Masuda M., “Classification of $\mathbb Q$-trivial Bott manifolds”, J. Symplectic Geom., 10:3 (2012), 447–461 | MR | Zbl
[6] Choi S., Masuda M., Suh D.Y., “Topological classification of generalized Bott towers”, Trans. Amer. Math. Soc., 362:2 (2010), 1097–1112 | MR | Zbl
[7] Choi S., Masuda M., Suh D.Y., “Quasitoric manifolds over a product of simplices”, Osaka J. Math., 47:1 (2010), 109–129 | MR | Zbl
[8] Choi S., Panov T., Suh D.Y., “Toric cohomological rigidity of simple convex polytopes”, J. London Math. Soc. Ser. 2, 82:2 (2010), 343–360 | MR | Zbl
[9] Cox D.A., Little J.B., Schenck H.K., Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011 | MR | Zbl
[10] V. I. Danilov, “The geometry of toric varieties”, Russ. Math. Surv., 33:2 (1978), 97–154 | MR | Zbl
[11] Etherington I.M.H., “Some problems of non-associative combinations. I”, Edinburgh Math. Notes, 32 (1940), 1–6 | MR
[12] Hasui S., Kuwata H., Masuda M., Park S., “Classification of toric manifolds over an $n$-cube with one vertex cut”, Int. Math. Res. Not., 2020:16 (2020), 4890–4941 | MR | Zbl
[13] Higashitani A., Kurimoto K., “Cohomological rigidity for Fano Bott manifolds”, Math. Z., 301:3 (2022), 2369–2391 | MR | Zbl
[14] Jurkiewicz J., Torus embeddings, polyhedra, $k^*$-actions and homology, Diss. Math., 236, Inst. Math. Pol. Acad. Sci., Warsaw, 1985 | MR
[15] Lee E., Masuda M., Park S., Toric Richardson varieties of Catalan type and Wedderburn–Etherington numbers, E-print, 2021, arXiv: 2105.12274v1 [math.AG]
[16] Łukasiewicz J., Selected works, ed. by L. Borkowski, North-Holland, Amsterdam, 1970 | MR
[17] Masuda M., Suh D.Y., “Classification problems of toric manifolds via topology”, Toric topology: Proc. Int. Conf., Osaka, 2006, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 273–286 | MR | Zbl
[18] Riordan J., “The blossoming of Schröder's fourth problem”, Acta math., 137 (1976), 1–16 | MR | Zbl
[19] Schröder E., “Vier combinatorische Probleme”, Z. Math. Phys., 15 (1870), 361–376
[20] Stanley R.P., “Polygon dissections and standard Young tableaux”, J. Comb. Theory. Ser. A, 76:1 (1996), 175–177 | MR | Zbl
[21] The on-line encyclopedia of integers sequences (OEIS) https://oeis.org