Toric Varieties of Schr\"oder Type
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 179-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

A dissection of a polygon is obtained by drawing diagonals such that no two diagonals intersect in their interiors. In this paper, we define a toric variety of Schröder type as a smooth toric variety associated with a polygon dissection. Toric varieties of Schröder type are Fano generalized Bott manifolds, and they are isomorphic if and only if the associated Schröder trees are the same as unordered rooted trees. We describe the cohomology ring of a toric variety of Schröder type using the associated Schröder tree and discuss the cohomological rigidity problem.
Keywords: toric variety, polygon dissection, Schröder tree, generalized Bott manifold.
@article{TM_2022_317_a8,
     author = {JiSun Huh and Seonjeong Park},
     title = {Toric {Varieties} of {Schr\"oder} {Type}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {179--197},
     publisher = {mathdoc},
     volume = {317},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a8/}
}
TY  - JOUR
AU  - JiSun Huh
AU  - Seonjeong Park
TI  - Toric Varieties of Schr\"oder Type
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 179
EP  - 197
VL  - 317
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_317_a8/
LA  - ru
ID  - TM_2022_317_a8
ER  - 
%0 Journal Article
%A JiSun Huh
%A Seonjeong Park
%T Toric Varieties of Schr\"oder Type
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 179-197
%V 317
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_317_a8/
%G ru
%F TM_2022_317_a8
JiSun Huh; Seonjeong Park. Toric Varieties of Schr\"oder Type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 179-197. http://geodesic.mathdoc.fr/item/TM_2022_317_a8/

[1] Batyrev V.V., “On the classification of toric Fano 4-folds”, J. Math. Sci., 94:1 (1999), 1021–1050 | MR | Zbl

[2] Cayley A., “On the analytical forms called trees. Part II”, Philos. Mag. Ser. 4, 18:121 (1859), 374–378 | MR

[3] Cayley A., “On the partitions of a polygon”, Proc. London Math. Soc. Ser. 1, 22 (1891), 237–262 | MR

[4] Choi S., “Classification of Bott manifolds up to dimension 8”, Proc. Edinburgh Math. Soc. Ser. 2, 58:3 (2015), 653–659 | MR | Zbl

[5] Choi S., Masuda M., “Classification of $\mathbb Q$-trivial Bott manifolds”, J. Symplectic Geom., 10:3 (2012), 447–461 | MR | Zbl

[6] Choi S., Masuda M., Suh D.Y., “Topological classification of generalized Bott towers”, Trans. Amer. Math. Soc., 362:2 (2010), 1097–1112 | MR | Zbl

[7] Choi S., Masuda M., Suh D.Y., “Quasitoric manifolds over a product of simplices”, Osaka J. Math., 47:1 (2010), 109–129 | MR | Zbl

[8] Choi S., Panov T., Suh D.Y., “Toric cohomological rigidity of simple convex polytopes”, J. London Math. Soc. Ser. 2, 82:2 (2010), 343–360 | MR | Zbl

[9] Cox D.A., Little J.B., Schenck H.K., Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011 | MR | Zbl

[10] V. I. Danilov, “The geometry of toric varieties”, Russ. Math. Surv., 33:2 (1978), 97–154 | MR | Zbl

[11] Etherington I.M.H., “Some problems of non-associative combinations. I”, Edinburgh Math. Notes, 32 (1940), 1–6 | MR

[12] Hasui S., Kuwata H., Masuda M., Park S., “Classification of toric manifolds over an $n$-cube with one vertex cut”, Int. Math. Res. Not., 2020:16 (2020), 4890–4941 | MR | Zbl

[13] Higashitani A., Kurimoto K., “Cohomological rigidity for Fano Bott manifolds”, Math. Z., 301:3 (2022), 2369–2391 | MR | Zbl

[14] Jurkiewicz J., Torus embeddings, polyhedra, $k^*$-actions and homology, Diss. Math., 236, Inst. Math. Pol. Acad. Sci., Warsaw, 1985 | MR

[15] Lee E., Masuda M., Park S., Toric Richardson varieties of Catalan type and Wedderburn–Etherington numbers, E-print, 2021, arXiv: 2105.12274v1 [math.AG]

[16] Łukasiewicz J., Selected works, ed. by L. Borkowski, North-Holland, Amsterdam, 1970 | MR

[17] Masuda M., Suh D.Y., “Classification problems of toric manifolds via topology”, Toric topology: Proc. Int. Conf., Osaka, 2006, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 273–286 | MR | Zbl

[18] Riordan J., “The blossoming of Schröder's fourth problem”, Acta math., 137 (1976), 1–16 | MR | Zbl

[19] Schröder E., “Vier combinatorische Probleme”, Z. Math. Phys., 15 (1870), 361–376

[20] Stanley R.P., “Polygon dissections and standard Young tableaux”, J. Comb. Theory. Ser. A, 76:1 (1996), 175–177 | MR | Zbl

[21] The on-line encyclopedia of integers sequences (OEIS) https://oeis.org