Polyhedral Products for Connected Sums of Simplicial Complexes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 168-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate how the homotopy type of a polyhedral product changes under the operation of taking the connected sum of two simplicial complexes. This is obtained as a consequence of a more general result that considers how the homotopy type of a polyhedral product changes under the operation of gluing two simplicial complexes together along a common full subcomplex.
Keywords: polyhedral product, simplicial complex, connected sum.
@article{TM_2022_317_a7,
     author = {Stephen Theriault},
     title = {Polyhedral {Products} for {Connected} {Sums} of {Simplicial} {Complexes}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {168--178},
     publisher = {mathdoc},
     volume = {317},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a7/}
}
TY  - JOUR
AU  - Stephen Theriault
TI  - Polyhedral Products for Connected Sums of Simplicial Complexes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 168
EP  - 178
VL  - 317
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_317_a7/
LA  - ru
ID  - TM_2022_317_a7
ER  - 
%0 Journal Article
%A Stephen Theriault
%T Polyhedral Products for Connected Sums of Simplicial Complexes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 168-178
%V 317
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_317_a7/
%G ru
%F TM_2022_317_a7
Stephen Theriault. Polyhedral Products for Connected Sums of Simplicial Complexes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 168-178. http://geodesic.mathdoc.fr/item/TM_2022_317_a7/

[1] Bahri A., Bendersky M., Cohen F.R., “Polyhedral products and features of their homotopy”, Handbook of homotopy theory, CRC Press, Boca Raton, FL, 2020, 103–144 | MR | Zbl

[2] Beben P., Theriault S., “The loop space homotopy type of simply-connected four-manifolds and their generalizations”, Adv. Math., 262 (2014), 213–238 | MR | Zbl

[3] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl

[4] Denham G., Suciu A.I., “Moment–angle complexes, monomial ideals and Massey products”, Pure Appl. Math. Q., 3:1 (2007), 25–60 | MR | Zbl

[5] Grbić J., Theriault S., “The homotopy type of the complement of a coordinate subspace arrangement”, Topology, 46:4 (2007), 357–396 | MR | Zbl

[6] Grbić J., Theriault S., “The homotopy type of the polyhedral product for shifted complexes”, Adv. Math., 245 (2013), 690–715 | MR | Zbl

[7] Mather M., “Pull-backs in homotopy theory”, Can. J. Math., 28 (1976), 225–263 | MR | Zbl

[8] McGavran D., “Adjacent connected sums and torus actions”, Trans. Amer. Math. Soc., 251 (1979), 235–254 | MR | Zbl

[9] T. E. Panov and Ya. A. Veryovkin, “Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups”, Sb. Math., 207:11 (2016), 1582–1600 | MR | Zbl

[10] Theriault S., “Moment–angle manifolds and Panov's problem”, Int. Math. Res. Not., 2015:20 (2015), 10154–10175 | MR | Zbl

[11] Theriault S., “Toric homotopy theory”, Combinatorial and toric homotopy, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 35, World Scientific, Hackensack, NJ, 2018, 1–66 | MR | Zbl