Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_317_a7, author = {Stephen Theriault}, title = {Polyhedral {Products} for {Connected} {Sums} of {Simplicial} {Complexes}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {168--178}, publisher = {mathdoc}, volume = {317}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a7/} }
Stephen Theriault. Polyhedral Products for Connected Sums of Simplicial Complexes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 168-178. http://geodesic.mathdoc.fr/item/TM_2022_317_a7/
[1] Bahri A., Bendersky M., Cohen F.R., “Polyhedral products and features of their homotopy”, Handbook of homotopy theory, CRC Press, Boca Raton, FL, 2020, 103–144 | MR | Zbl
[2] Beben P., Theriault S., “The loop space homotopy type of simply-connected four-manifolds and their generalizations”, Adv. Math., 262 (2014), 213–238 | MR | Zbl
[3] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl
[4] Denham G., Suciu A.I., “Moment–angle complexes, monomial ideals and Massey products”, Pure Appl. Math. Q., 3:1 (2007), 25–60 | MR | Zbl
[5] Grbić J., Theriault S., “The homotopy type of the complement of a coordinate subspace arrangement”, Topology, 46:4 (2007), 357–396 | MR | Zbl
[6] Grbić J., Theriault S., “The homotopy type of the polyhedral product for shifted complexes”, Adv. Math., 245 (2013), 690–715 | MR | Zbl
[7] Mather M., “Pull-backs in homotopy theory”, Can. J. Math., 28 (1976), 225–263 | MR | Zbl
[8] McGavran D., “Adjacent connected sums and torus actions”, Trans. Amer. Math. Soc., 251 (1979), 235–254 | MR | Zbl
[9] T. E. Panov and Ya. A. Veryovkin, “Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups”, Sb. Math., 207:11 (2016), 1582–1600 | MR | Zbl
[10] Theriault S., “Moment–angle manifolds and Panov's problem”, Int. Math. Res. Not., 2015:20 (2015), 10154–10175 | MR | Zbl
[11] Theriault S., “Toric homotopy theory”, Combinatorial and toric homotopy, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 35, World Scientific, Hackensack, NJ, 2018, 1–66 | MR | Zbl