Voir la notice du chapitre de livre
Keywords: equivariant cohomology, equivariant formality, graded modules over polynomial rings.
@article{TM_2022_317_a6,
author = {Taras E. Panov and Indira K. Zeinikesheva},
title = {Equivariant {Cohomology} of {Moment{\textendash}Angle} {Complexes} with {Respect} to {Coordinate} {Subtori}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {157--167},
year = {2022},
volume = {317},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a6/}
}
TY - JOUR AU - Taras E. Panov AU - Indira K. Zeinikesheva TI - Equivariant Cohomology of Moment–Angle Complexes with Respect to Coordinate Subtori JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 157 EP - 167 VL - 317 UR - http://geodesic.mathdoc.fr/item/TM_2022_317_a6/ LA - ru ID - TM_2022_317_a6 ER -
%0 Journal Article %A Taras E. Panov %A Indira K. Zeinikesheva %T Equivariant Cohomology of Moment–Angle Complexes with Respect to Coordinate Subtori %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 157-167 %V 317 %U http://geodesic.mathdoc.fr/item/TM_2022_317_a6/ %G ru %F TM_2022_317_a6
Taras E. Panov; Indira K. Zeinikesheva. Equivariant Cohomology of Moment–Angle Complexes with Respect to Coordinate Subtori. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 157-167. http://geodesic.mathdoc.fr/item/TM_2022_317_a6/
[1] S. A. Abramyan and T. E. Panov, “Higher Whitehead products in moment–angle complexes and substitution of simplicial complexes”, Proc. Steklov Inst. Math., 305 (2019), 1–21 | MR | Zbl
[2] I. V. Baskakov, V. M. Buchstaber, and T. E. Panov, “Cellular cochain algebras and torus actions”, Russ. Math. Surv., 59:3 (2004), 562–563 | MR | Zbl
[3] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl
[4] Eilenberg S., Moore J.C., “Homology and fibrations. I: Coalgebras, cotensor product and its derived functors”, Comment. math. Helv., 40 (1966), 199–236 | MR | Zbl
[5] M. Franz, “The integral cohomology of toric manifolds”, Proc. Steklov Inst. Math., 252 (2006), 53–62 | MR | Zbl
[6] Franz M., Dga models for moment–angle complexes, E-print, 2020, arXiv: 2006.01571 [math.AT]
[7] J. Grbić and S. Theriault, “Homotopy theory in toric topology”, Russ. Math. Surv., 71:2 (2016), 185–251 | MR | Zbl
[8] Luo S., Matsumura T., Moore W.F., “Moment angle complexes and big Cohen–Macaulayness”, Algebr. Geom. Topol., 14:1 (2014), 379–406 | MR | Zbl
[9] Mac Lane S., Homology, Grundl. Math. Wiss., 114, Springer, Berlin, 1963 | MR | Zbl
[10] McCleary J., A user's guide to spectral sequences, Cambridge Stud. Adv. Math., 58, 2nd ed., Cambridge Univ. Press, Cambridge, 2001 | MR
[11] Notbohm D., Ray N., “On Davis–Januszkiewicz homotopy types. I: Formality and rationalisation”, Algebr. Geom. Topol., 5:1 (2005), 31–51 | MR | Zbl
[12] Panov T., Theriault S., “The homotopy theory of polyhedral products associated with flag complexes”, Compos. math., 155:1 (2019), 206–228 | MR | Zbl
[13] T. E. Panov and Ya. A. Veryovkin, “Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups”, Sb. Math., 207:11 (2016), 1582–1600 | MR | Zbl