Equivariant Cohomology of Moment–Angle Complexes with Respect to Coordinate Subtori
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 157-167
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We compute the equivariant cohomology $H^*_{T_I}(\mathcal Z_{\mathcal K})$ of moment–angle complexes $\mathcal Z_{\mathcal K}$ with respect to the action of coordinate subtori $T_I \subset T^m$. We give a criterion for $\mathcal Z_{\mathcal K}$ to be equivariantly formal, and obtain specifications for the cases of flag complexes and graphs.
Mots-clés : moment–angle complex
Keywords: equivariant cohomology, equivariant formality, graded modules over polynomial rings.
@article{TM_2022_317_a6,
     author = {Taras E. Panov and Indira K. Zeinikesheva},
     title = {Equivariant {Cohomology} of {Moment{\textendash}Angle} {Complexes} with {Respect} to {Coordinate} {Subtori}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {157--167},
     year = {2022},
     volume = {317},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a6/}
}
TY  - JOUR
AU  - Taras E. Panov
AU  - Indira K. Zeinikesheva
TI  - Equivariant Cohomology of Moment–Angle Complexes with Respect to Coordinate Subtori
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 157
EP  - 167
VL  - 317
UR  - http://geodesic.mathdoc.fr/item/TM_2022_317_a6/
LA  - ru
ID  - TM_2022_317_a6
ER  - 
%0 Journal Article
%A Taras E. Panov
%A Indira K. Zeinikesheva
%T Equivariant Cohomology of Moment–Angle Complexes with Respect to Coordinate Subtori
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 157-167
%V 317
%U http://geodesic.mathdoc.fr/item/TM_2022_317_a6/
%G ru
%F TM_2022_317_a6
Taras E. Panov; Indira K. Zeinikesheva. Equivariant Cohomology of Moment–Angle Complexes with Respect to Coordinate Subtori. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 157-167. http://geodesic.mathdoc.fr/item/TM_2022_317_a6/

[1] S. A. Abramyan and T. E. Panov, “Higher Whitehead products in moment–angle complexes and substitution of simplicial complexes”, Proc. Steklov Inst. Math., 305 (2019), 1–21 | MR | Zbl

[2] I. V. Baskakov, V. M. Buchstaber, and T. E. Panov, “Cellular cochain algebras and torus actions”, Russ. Math. Surv., 59:3 (2004), 562–563 | MR | Zbl

[3] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl

[4] Eilenberg S., Moore J.C., “Homology and fibrations. I: Coalgebras, cotensor product and its derived functors”, Comment. math. Helv., 40 (1966), 199–236 | MR | Zbl

[5] M. Franz, “The integral cohomology of toric manifolds”, Proc. Steklov Inst. Math., 252 (2006), 53–62 | MR | Zbl

[6] Franz M., Dga models for moment–angle complexes, E-print, 2020, arXiv: 2006.01571 [math.AT]

[7] J. Grbić and S. Theriault, “Homotopy theory in toric topology”, Russ. Math. Surv., 71:2 (2016), 185–251 | MR | Zbl

[8] Luo S., Matsumura T., Moore W.F., “Moment angle complexes and big Cohen–Macaulayness”, Algebr. Geom. Topol., 14:1 (2014), 379–406 | MR | Zbl

[9] Mac Lane S., Homology, Grundl. Math. Wiss., 114, Springer, Berlin, 1963 | MR | Zbl

[10] McCleary J., A user's guide to spectral sequences, Cambridge Stud. Adv. Math., 58, 2nd ed., Cambridge Univ. Press, Cambridge, 2001 | MR

[11] Notbohm D., Ray N., “On Davis–Januszkiewicz homotopy types. I: Formality and rationalisation”, Algebr. Geom. Topol., 5:1 (2005), 31–51 | MR | Zbl

[12] Panov T., Theriault S., “The homotopy theory of polyhedral products associated with flag complexes”, Compos. math., 155:1 (2019), 206–228 | MR | Zbl

[13] T. E. Panov and Ya. A. Veryovkin, “Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups”, Sb. Math., 207:11 (2016), 1582–1600 | MR | Zbl