Equivariant Cohomology of Moment--Angle Complexes with Respect to Coordinate Subtori
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 157-167

Voir la notice de l'article provenant de la source Math-Net.Ru

We compute the equivariant cohomology $H^*_{T_I}(\mathcal Z_{\mathcal K})$ of moment–angle complexes $\mathcal Z_{\mathcal K}$ with respect to the action of coordinate subtori $T_I \subset T^m$. We give a criterion for $\mathcal Z_{\mathcal K}$ to be equivariantly formal, and obtain specifications for the cases of flag complexes and graphs.
Mots-clés : moment–angle complex
Keywords: equivariant cohomology, equivariant formality, graded modules over polynomial rings.
@article{TM_2022_317_a6,
     author = {Taras E. Panov and Indira K. Zeinikesheva},
     title = {Equivariant {Cohomology} of {Moment--Angle} {Complexes} with {Respect} to {Coordinate} {Subtori}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {157--167},
     publisher = {mathdoc},
     volume = {317},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a6/}
}
TY  - JOUR
AU  - Taras E. Panov
AU  - Indira K. Zeinikesheva
TI  - Equivariant Cohomology of Moment--Angle Complexes with Respect to Coordinate Subtori
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 157
EP  - 167
VL  - 317
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_317_a6/
LA  - ru
ID  - TM_2022_317_a6
ER  - 
%0 Journal Article
%A Taras E. Panov
%A Indira K. Zeinikesheva
%T Equivariant Cohomology of Moment--Angle Complexes with Respect to Coordinate Subtori
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 157-167
%V 317
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_317_a6/
%G ru
%F TM_2022_317_a6
Taras E. Panov; Indira K. Zeinikesheva. Equivariant Cohomology of Moment--Angle Complexes with Respect to Coordinate Subtori. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 157-167. http://geodesic.mathdoc.fr/item/TM_2022_317_a6/