Equivariant Cohomology of Moment--Angle Complexes with Respect to Coordinate Subtori
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 157-167.

Voir la notice de l'article provenant de la source Math-Net.Ru

We compute the equivariant cohomology $H^*_{T_I}(\mathcal Z_{\mathcal K})$ of moment–angle complexes $\mathcal Z_{\mathcal K}$ with respect to the action of coordinate subtori $T_I \subset T^m$. We give a criterion for $\mathcal Z_{\mathcal K}$ to be equivariantly formal, and obtain specifications for the cases of flag complexes and graphs.
Mots-clés : moment–angle complex
Keywords: equivariant cohomology, equivariant formality, graded modules over polynomial rings.
@article{TM_2022_317_a6,
     author = {Taras E. Panov and Indira K. Zeinikesheva},
     title = {Equivariant {Cohomology} of {Moment--Angle} {Complexes} with {Respect} to {Coordinate} {Subtori}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {157--167},
     publisher = {mathdoc},
     volume = {317},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a6/}
}
TY  - JOUR
AU  - Taras E. Panov
AU  - Indira K. Zeinikesheva
TI  - Equivariant Cohomology of Moment--Angle Complexes with Respect to Coordinate Subtori
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 157
EP  - 167
VL  - 317
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_317_a6/
LA  - ru
ID  - TM_2022_317_a6
ER  - 
%0 Journal Article
%A Taras E. Panov
%A Indira K. Zeinikesheva
%T Equivariant Cohomology of Moment--Angle Complexes with Respect to Coordinate Subtori
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 157-167
%V 317
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_317_a6/
%G ru
%F TM_2022_317_a6
Taras E. Panov; Indira K. Zeinikesheva. Equivariant Cohomology of Moment--Angle Complexes with Respect to Coordinate Subtori. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 157-167. http://geodesic.mathdoc.fr/item/TM_2022_317_a6/

[1] S. A. Abramyan and T. E. Panov, “Higher Whitehead products in moment–angle complexes and substitution of simplicial complexes”, Proc. Steklov Inst. Math., 305 (2019), 1–21 | MR | Zbl

[2] I. V. Baskakov, V. M. Buchstaber, and T. E. Panov, “Cellular cochain algebras and torus actions”, Russ. Math. Surv., 59:3 (2004), 562–563 | MR | Zbl

[3] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl

[4] Eilenberg S., Moore J.C., “Homology and fibrations. I: Coalgebras, cotensor product and its derived functors”, Comment. math. Helv., 40 (1966), 199–236 | MR | Zbl

[5] M. Franz, “The integral cohomology of toric manifolds”, Proc. Steklov Inst. Math., 252 (2006), 53–62 | MR | Zbl

[6] Franz M., Dga models for moment–angle complexes, E-print, 2020, arXiv: 2006.01571 [math.AT]

[7] J. Grbić and S. Theriault, “Homotopy theory in toric topology”, Russ. Math. Surv., 71:2 (2016), 185–251 | MR | Zbl

[8] Luo S., Matsumura T., Moore W.F., “Moment angle complexes and big Cohen–Macaulayness”, Algebr. Geom. Topol., 14:1 (2014), 379–406 | MR | Zbl

[9] Mac Lane S., Homology, Grundl. Math. Wiss., 114, Springer, Berlin, 1963 | MR | Zbl

[10] McCleary J., A user's guide to spectral sequences, Cambridge Stud. Adv. Math., 58, 2nd ed., Cambridge Univ. Press, Cambridge, 2001 | MR

[11] Notbohm D., Ray N., “On Davis–Januszkiewicz homotopy types. I: Formality and rationalisation”, Algebr. Geom. Topol., 5:1 (2005), 31–51 | MR | Zbl

[12] Panov T., Theriault S., “The homotopy theory of polyhedral products associated with flag complexes”, Compos. math., 155:1 (2019), 206–228 | MR | Zbl

[13] T. E. Panov and Ya. A. Veryovkin, “Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups”, Sb. Math., 207:11 (2016), 1582–1600 | MR | Zbl