Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_317_a6, author = {Taras E. Panov and Indira K. Zeinikesheva}, title = {Equivariant {Cohomology} of {Moment--Angle} {Complexes} with {Respect} to {Coordinate} {Subtori}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {157--167}, publisher = {mathdoc}, volume = {317}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a6/} }
TY - JOUR AU - Taras E. Panov AU - Indira K. Zeinikesheva TI - Equivariant Cohomology of Moment--Angle Complexes with Respect to Coordinate Subtori JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 157 EP - 167 VL - 317 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_317_a6/ LA - ru ID - TM_2022_317_a6 ER -
%0 Journal Article %A Taras E. Panov %A Indira K. Zeinikesheva %T Equivariant Cohomology of Moment--Angle Complexes with Respect to Coordinate Subtori %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 157-167 %V 317 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2022_317_a6/ %G ru %F TM_2022_317_a6
Taras E. Panov; Indira K. Zeinikesheva. Equivariant Cohomology of Moment--Angle Complexes with Respect to Coordinate Subtori. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 157-167. http://geodesic.mathdoc.fr/item/TM_2022_317_a6/
[1] S. A. Abramyan and T. E. Panov, “Higher Whitehead products in moment–angle complexes and substitution of simplicial complexes”, Proc. Steklov Inst. Math., 305 (2019), 1–21 | MR | Zbl
[2] I. V. Baskakov, V. M. Buchstaber, and T. E. Panov, “Cellular cochain algebras and torus actions”, Russ. Math. Surv., 59:3 (2004), 562–563 | MR | Zbl
[3] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl
[4] Eilenberg S., Moore J.C., “Homology and fibrations. I: Coalgebras, cotensor product and its derived functors”, Comment. math. Helv., 40 (1966), 199–236 | MR | Zbl
[5] M. Franz, “The integral cohomology of toric manifolds”, Proc. Steklov Inst. Math., 252 (2006), 53–62 | MR | Zbl
[6] Franz M., Dga models for moment–angle complexes, E-print, 2020, arXiv: 2006.01571 [math.AT]
[7] J. Grbić and S. Theriault, “Homotopy theory in toric topology”, Russ. Math. Surv., 71:2 (2016), 185–251 | MR | Zbl
[8] Luo S., Matsumura T., Moore W.F., “Moment angle complexes and big Cohen–Macaulayness”, Algebr. Geom. Topol., 14:1 (2014), 379–406 | MR | Zbl
[9] Mac Lane S., Homology, Grundl. Math. Wiss., 114, Springer, Berlin, 1963 | MR | Zbl
[10] McCleary J., A user's guide to spectral sequences, Cambridge Stud. Adv. Math., 58, 2nd ed., Cambridge Univ. Press, Cambridge, 2001 | MR
[11] Notbohm D., Ray N., “On Davis–Januszkiewicz homotopy types. I: Formality and rationalisation”, Algebr. Geom. Topol., 5:1 (2005), 31–51 | MR | Zbl
[12] Panov T., Theriault S., “The homotopy theory of polyhedral products associated with flag complexes”, Compos. math., 155:1 (2019), 206–228 | MR | Zbl
[13] T. E. Panov and Ya. A. Veryovkin, “Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups”, Sb. Math., 207:11 (2016), 1582–1600 | MR | Zbl