Equivariant Cohomology of Moment--Angle Complexes with Respect to Coordinate Subtori
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 157-167
Voir la notice de l'article provenant de la source Math-Net.Ru
We compute the equivariant cohomology $H^*_{T_I}(\mathcal Z_{\mathcal K})$ of moment–angle complexes $\mathcal Z_{\mathcal K}$ with respect to the action of coordinate subtori $T_I \subset T^m$. We give a criterion for $\mathcal Z_{\mathcal K}$ to be equivariantly formal, and obtain specifications for the cases of flag complexes and graphs.
Mots-clés :
moment–angle complex
Keywords: equivariant cohomology, equivariant formality, graded modules over polynomial rings.
Keywords: equivariant cohomology, equivariant formality, graded modules over polynomial rings.
@article{TM_2022_317_a6,
author = {Taras E. Panov and Indira K. Zeinikesheva},
title = {Equivariant {Cohomology} of {Moment--Angle} {Complexes} with {Respect} to {Coordinate} {Subtori}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {157--167},
publisher = {mathdoc},
volume = {317},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a6/}
}
TY - JOUR AU - Taras E. Panov AU - Indira K. Zeinikesheva TI - Equivariant Cohomology of Moment--Angle Complexes with Respect to Coordinate Subtori JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 157 EP - 167 VL - 317 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_317_a6/ LA - ru ID - TM_2022_317_a6 ER -
%0 Journal Article %A Taras E. Panov %A Indira K. Zeinikesheva %T Equivariant Cohomology of Moment--Angle Complexes with Respect to Coordinate Subtori %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 157-167 %V 317 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2022_317_a6/ %G ru %F TM_2022_317_a6
Taras E. Panov; Indira K. Zeinikesheva. Equivariant Cohomology of Moment--Angle Complexes with Respect to Coordinate Subtori. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 157-167. http://geodesic.mathdoc.fr/item/TM_2022_317_a6/