Fundamental Groups of Three-Dimensional Small Covers
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 89-106

Voir la notice de l'article provenant de la source Math-Net.Ru

Small covers arising from three-dimensional simple polytopes are an interesting class of 3-manifolds. The fundamental group is a rigid invariant for wide classes of 3-manifolds, particularly for orientable Haken manifolds, which include orientable small covers over flag polytopes. By using the Morse-theoretic approach, we give a procedure to get an explicit balanced presentation of the fundamental group of a closed orientable three-dimensional small cover with minimal number of generators. Our procedure is completely algorithmic and geometrical.
Keywords: fundamental group, Haken manifold, three-dimensional simple polytope.
@article{TM_2022_317_a3,
     author = {Vladimir Gruji\'c},
     title = {Fundamental {Groups} of {Three-Dimensional} {Small} {Covers}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {89--106},
     publisher = {mathdoc},
     volume = {317},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a3/}
}
TY  - JOUR
AU  - Vladimir Grujić
TI  - Fundamental Groups of Three-Dimensional Small Covers
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 89
EP  - 106
VL  - 317
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_317_a3/
LA  - ru
ID  - TM_2022_317_a3
ER  - 
%0 Journal Article
%A Vladimir Grujić
%T Fundamental Groups of Three-Dimensional Small Covers
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 89-106
%V 317
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_317_a3/
%G ru
%F TM_2022_317_a3
Vladimir Grujić. Fundamental Groups of Three-Dimensional Small Covers. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 89-106. http://geodesic.mathdoc.fr/item/TM_2022_317_a3/