Fundamental Groups of Three-Dimensional Small Covers
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 89-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

Small covers arising from three-dimensional simple polytopes are an interesting class of 3-manifolds. The fundamental group is a rigid invariant for wide classes of 3-manifolds, particularly for orientable Haken manifolds, which include orientable small covers over flag polytopes. By using the Morse-theoretic approach, we give a procedure to get an explicit balanced presentation of the fundamental group of a closed orientable three-dimensional small cover with minimal number of generators. Our procedure is completely algorithmic and geometrical.
Keywords: fundamental group, Haken manifold, three-dimensional simple polytope.
@article{TM_2022_317_a3,
     author = {Vladimir Gruji\'c},
     title = {Fundamental {Groups} of {Three-Dimensional} {Small} {Covers}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {89--106},
     publisher = {mathdoc},
     volume = {317},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a3/}
}
TY  - JOUR
AU  - Vladimir Grujić
TI  - Fundamental Groups of Three-Dimensional Small Covers
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 89
EP  - 106
VL  - 317
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_317_a3/
LA  - ru
ID  - TM_2022_317_a3
ER  - 
%0 Journal Article
%A Vladimir Grujić
%T Fundamental Groups of Three-Dimensional Small Covers
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 89-106
%V 317
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_317_a3/
%G ru
%F TM_2022_317_a3
Vladimir Grujić. Fundamental Groups of Three-Dimensional Small Covers. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 89-106. http://geodesic.mathdoc.fr/item/TM_2022_317_a3/

[1] E. M. Andreev, “On convex polyhedra in Lobačevskiĭ spaces”, Math. USSR, Sb., 10:3 (1970), 413–440 | DOI | MR | Zbl

[2] V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, and S. Park, “Cohomological rigidity of manifolds defined by 3-dimensional polytopes”, Russ. Math. Surv., 72:2 (2017), 199–256 | DOI | MR | Zbl

[3] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[4] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[5] Davis M., Januszkiewicz T., Scott R., “Nonpositive curvature of blow-ups”, Sel. math., 4:4 (1998), 491–547 | DOI | MR | Zbl

[6] N. Yu. Erokhovets, “Canonical geometrization of orientable 3-manifolds defined by vector-colourings of 3-polytopes”, Sb. Math., 213:6 (2022) | DOI | MR

[7] Hempel J., 3-manifolds, Ann. Math. Stud., 86, Princeton Univ. Press, Princeton, NJ, 1976 | MR | Zbl

[8] Joswig M., “Projectivities in simplicial complexes and colorings of simple polytopes”, Math. Z., 240:2 (2002), 243–259 | DOI | MR | Zbl

[9] A. G. Khovanskii, “Hyperplane sections of polyhedra, toroidal manifolds, and discrete groups in Lobachevskii space”, Funct. Anal. Appl., 20:1 (1986), 41–50 | DOI | MR | Zbl

[10] Nakayama H., Nishimura Y., “The orientability of small covers and coloring simple polytopes”, Osaka J. Math., 42:1 (2005), 243–256 | MR | Zbl

[11] A. V. Pogorelov, “A regular partition of Lobachevskian space”, Math. Notes, 1:1 (1967), 3–5 | DOI | MR | Zbl

[12] Suciu A., Trevisan A., Real toric varieties and abelian covers of generalized Davis–Januszkiewicz spaces, Preprint, 2012 | MR

[13] Waldhausen F., “On irreducible 3-manifolds which are sufficiently large”, Ann. Math. Ser. 2, 87 (1968), 56–88 | DOI | MR | Zbl

[14] Wu L., Yu L., “Fundamental groups of small covers revisited”, Int. Math. Res. Not., 2021:10 (2021), 7262–7298 | DOI | MR | Zbl

[15] Wu L., Yu L., Fundamental groups of small covers revisited, E-print, 2017, arXiv: 1712.00698v2 [math.AT] | MR