Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_317_a1, author = {V. M. Buchstaber and S. Terzi\'c}, title = {Resolution of {Singularities} of the {Orbit} {Spaces} $G_{n,2}/T^n$}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {27--63}, publisher = {mathdoc}, volume = {317}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a1/} }
TY - JOUR AU - V. M. Buchstaber AU - S. Terzić TI - Resolution of Singularities of the Orbit Spaces $G_{n,2}/T^n$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 27 EP - 63 VL - 317 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_317_a1/ LA - ru ID - TM_2022_317_a1 ER -
V. M. Buchstaber; S. Terzić. Resolution of Singularities of the Orbit Spaces $G_{n,2}/T^n$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 27-63. http://geodesic.mathdoc.fr/item/TM_2022_317_a1/
[1] Atiyah M.F., “Convexity and commuting Hamiltonians”, Bull. London Math. Soc., 14 (1982), 1–15 | DOI | MR | Zbl
[2] A. A. Ayzenberg, “Torus actions of complexity 1 and their local properties”, Proc. Steklov Inst. Math., 302 (2018), 16–32 | DOI | MR | Zbl
[3] Ayzenberg A., “Torus action on quaternionic projective plane and related spaces”, Arnold Math. J., 7:2 (2021), 243–266 ; arXiv: 1903.03460 [math.AT] | DOI | MR | Zbl
[4] Ayzenberg A., Cherepanov V., “Torus actions of complexity one in non-general position”, Osaka J. Math., 58:4 (2021), 839–853 ; arXiv: 1905.04761 [math.AT] | MR | Zbl
[5] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl
[6] Buchstaber V.M., Terzić S., “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $\mathbb {C}P^5$”, Moscow Math. J., 16:2 (2016), 237–273 | DOI | MR | Zbl
[7] Buchstaber V.M., Terzić S., “Toric topology of the complex Grassmann manifolds”, Moscow Math. J., 19:3 (2019), 397–463 | DOI | MR | Zbl
[8] V. M. Buchstaber and S. Terzić, “The foundations of $(2n,k)$-manifolds”, Sb. Math., 210:4 (2019), 508–549 | DOI | MR | Zbl
[9] Buchstaber V.M., Terzić S., The orbit spaces $G_{n,2}/T^n$ and the Chow quotients $G_{n,2}/\!/(\mathbb {C}^*)^n$ of the Grassmann manifolds $G_{n,2}$, E-print, 2021, arXiv: 2104.08858 [math.AG]
[10] Buchstaber V.M., Terzić S., “Compact torus action on the complex Grassmann manifolds”, Toric topology and polyhedral products, Fields Inst. Commun., Springer, New York
[11] Chow W.-L., “On the geometry of algebraic homogeneous spaces”, Ann. Math. Ser. 2, 50 (1949), 32–67 | DOI | MR | Zbl
[12] Fulton W., Introduction to toric varieties, Ann. Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[13] Gelfand I.M., Goresky R.M., MacPherson R.D., Serganova V.V., “Combinatorial geometries, convex polyhedra, and Schubert cells”, Adv. Math., 63:3 (1987), 301–316 | DOI | MR | Zbl
[14] Gelfand I.M., MacPherson R.D., “Geometry in Grassmannians and a generalization of the dilogarithm”, Adv. Math., 44:3 (1982), 279–312 | DOI | MR | Zbl
[15] I. M. Gel'fand and V. V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact manifolds”, Russ. Math. Surv., 42:2 (1987), 133–168 | DOI | MR | Zbl | Zbl
[16] Goresky M., MacPherson R., “On the topology of algebraic torus actions”, Algebraic groups: Proc. Symp., Utrecht, 1986, Lect. Notes Math., 1271, Springer, Berlin, 1987, 73–90 | DOI | MR
[17] Kapranov M.M., “Chow quotients of Grassmannians. I”, I. M. Gelfand seminar, Pt. 2, Adv. Sov. Math., 16, Amer. Math. Soc., Providence, RI, 1993, 29–110 | MR | Zbl
[18] Karshon Y., Tolman S., “Classification of Hamiltonian torus actions with two-dimensional quotients”, Geom. Topol., 18:2 (2014), 669–716 | DOI | MR | Zbl
[19] Karshon Y., Tolman S., “Topology of complexity one quotients”, Pac. J. Math., 308:2 (2020), 332–346 | DOI | MR
[20] Keel S., “Intersection theory of moduli space of stable $n$-pointed curves of genus zero”, Trans. Amer. Math. Soc., 330:2 (1992), 545–574 | MR | Zbl
[21] Keel S., Tevelev J., “Geometry of Chow quotients of Grassmannians”, Duke Math. J., 134:2 (2006), 259–311 | DOI | MR | Zbl
[22] Kirwan F.C., Cohomology of quotients in symplectic and algebraic geometry, Math. Notes, 31, Princeton Univ. Press, Princeton, NJ, 1984 | MR | Zbl
[23] Klemyatin N., Universal spaces of parameters for complex Grassmann manifolds $G_{q+1,2}$, E-print, 2019, arXiv: 1905.03047 [math.AT]
[24] Knudsen F.F., “The projectivity of the moduli space of stable curves. II: The stacks $M_{g,n}$”, Math. Scand., 52:2 (1983), 161–199 | DOI | MR | Zbl
[25] Lee E., Masuda M., “Generic torus orbit closures in Schubert varieties”, J. Comb. Theory. Ser. A, 170 (2020), 105143 | DOI | MR | Zbl
[26] Lee E., Masuda M., Park S., “Torus orbit closures in flag varieties and retractions on Weyl groups”, Int. J. Math., 33:4 (2022), 2250028 ; arXiv: 1908.08310 [math.CO] | DOI | MR | Zbl
[27] Li L., “Wonderful compactification of an arrangement of subvarieties”, Mich. Math. J., 58:2 (2009), 535–563 | MR | Zbl
[28] McDuff D., Salamon D., $J$-holomorphic curves and symplectic topology, AMS Colloq. Publ., 52, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl
[29] M. Noji and K. Ogiwara, “The smooth torus orbit closures in the Grassmannians”, Proc. Steklov Inst. Math., 305 (2019), 251–261 | DOI | MR | Zbl
[30] Smale S., “Generalized Poincaré's conjecture in dimensions greater than four”, Ann. Math. Ser. 2, 74 (1961), 391–406 | DOI | MR | Zbl
[31] Süß H., “Toric topology of the Grassmannian of planes in $\mathbb {C}^5$ and the del Pezzo surface of degree 5”, Moscow Math. J., 21:3 (2021), 639–652 | DOI | MR | Zbl
[32] Timashev D., “Torus actions of complexity one”, Toric topology: Int. Conf., Osaka, 2006, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 349–364 | DOI | MR | Zbl