Resolution of Singularities of the Orbit Spaces $G_{n,2}/T^n$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 27-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the orbit space $X_n = G_{n,2}/T^n$ of the standard action of the compact torus $T^n$ on the complex Grassmann manifold $G_{n,2}$. We describe the structure of the set of critical points $\operatorname {Crit}G_{n,2}$ of the generalized moment map $\mu _n: G_{n,2}\to \mathbb {R}^n$ whose image is a hypersimplex $\Delta _{n,2}$. The canonical projection $G_{n,2}\to X_n$ maps the set $\operatorname {Crit} G_{n,2}$ to the set $\operatorname {Crit}X_n$, which by definition consists of the orbits $x\in X_n$ with nontrivial stabilizer subgroup in $T^{n-1}=T^n/S^1$, where $S^1\subset T^n$ is the diagonal one-dimensional torus. Introducing the notion of a singular point $x\in \operatorname {Sing}X_n \subset X_n$ in terms of the parameter spaces of the orbits, we prove that the set $Y_n = X_n\setminus \operatorname {Sing}X_n$ is an open manifold and is dense in $X_n$. We show that $\operatorname {Crit}X_n \subset \operatorname {Sing}X_n$ for $n>4$, but $\operatorname {Sing}X_4\subset \operatorname {Crit}X_4$. Our central result is the construction of a projection $p_n: U_n= \mathcal {F}_n\times \Delta _{n,2}\to X_n$, $\dim U_n = \dim X_n$, where $\mathcal {F}_n$ is a universal parameter space. Earlier, we have proved that $\mathcal {F}_n$ is a closed smooth manifold diffeomorphic to a known manifold $\,\overline {\!\mathcal {M}}(0,n)$. We show that the map $p_n: Z_n = p_n^{-1}(Y_n)\to Y_n$ is a diffeomorphism, and describe the structure of the sets $p_n^{-1}(x)$ for $x\in \operatorname {Sing}X_n$.
Keywords: Grassmann manifold, chamber decomposition of a hypersimplex, universal parameter space.
Mots-clés : torus action, orbit space
@article{TM_2022_317_a1,
     author = {V. M. Buchstaber and S. Terzi\'c},
     title = {Resolution of {Singularities} of the {Orbit} {Spaces} $G_{n,2}/T^n$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {27--63},
     publisher = {mathdoc},
     volume = {317},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a1/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - S. Terzić
TI  - Resolution of Singularities of the Orbit Spaces $G_{n,2}/T^n$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 27
EP  - 63
VL  - 317
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_317_a1/
LA  - ru
ID  - TM_2022_317_a1
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A S. Terzić
%T Resolution of Singularities of the Orbit Spaces $G_{n,2}/T^n$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 27-63
%V 317
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_317_a1/
%G ru
%F TM_2022_317_a1
V. M. Buchstaber; S. Terzić. Resolution of Singularities of the Orbit Spaces $G_{n,2}/T^n$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 27-63. http://geodesic.mathdoc.fr/item/TM_2022_317_a1/

[1] Atiyah M.F., “Convexity and commuting Hamiltonians”, Bull. London Math. Soc., 14 (1982), 1–15 | DOI | MR | Zbl

[2] A. A. Ayzenberg, “Torus actions of complexity 1 and their local properties”, Proc. Steklov Inst. Math., 302 (2018), 16–32 | DOI | MR | Zbl

[3] Ayzenberg A., “Torus action on quaternionic projective plane and related spaces”, Arnold Math. J., 7:2 (2021), 243–266 ; arXiv: 1903.03460 [math.AT] | DOI | MR | Zbl

[4] Ayzenberg A., Cherepanov V., “Torus actions of complexity one in non-general position”, Osaka J. Math., 58:4 (2021), 839–853 ; arXiv: 1905.04761 [math.AT] | MR | Zbl

[5] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[6] Buchstaber V.M., Terzić S., “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $\mathbb {C}P^5$”, Moscow Math. J., 16:2 (2016), 237–273 | DOI | MR | Zbl

[7] Buchstaber V.M., Terzić S., “Toric topology of the complex Grassmann manifolds”, Moscow Math. J., 19:3 (2019), 397–463 | DOI | MR | Zbl

[8] V. M. Buchstaber and S. Terzić, “The foundations of $(2n,k)$-manifolds”, Sb. Math., 210:4 (2019), 508–549 | DOI | MR | Zbl

[9] Buchstaber V.M., Terzić S., The orbit spaces $G_{n,2}/T^n$ and the Chow quotients $G_{n,2}/\!/(\mathbb {C}^*)^n$ of the Grassmann manifolds $G_{n,2}$, E-print, 2021, arXiv: 2104.08858 [math.AG]

[10] Buchstaber V.M., Terzić S., “Compact torus action on the complex Grassmann manifolds”, Toric topology and polyhedral products, Fields Inst. Commun., Springer, New York

[11] Chow W.-L., “On the geometry of algebraic homogeneous spaces”, Ann. Math. Ser. 2, 50 (1949), 32–67 | DOI | MR | Zbl

[12] Fulton W., Introduction to toric varieties, Ann. Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[13] Gelfand I.M., Goresky R.M., MacPherson R.D., Serganova V.V., “Combinatorial geometries, convex polyhedra, and Schubert cells”, Adv. Math., 63:3 (1987), 301–316 | DOI | MR | Zbl

[14] Gelfand I.M., MacPherson R.D., “Geometry in Grassmannians and a generalization of the dilogarithm”, Adv. Math., 44:3 (1982), 279–312 | DOI | MR | Zbl

[15] I. M. Gel'fand and V. V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact manifolds”, Russ. Math. Surv., 42:2 (1987), 133–168 | DOI | MR | Zbl | Zbl

[16] Goresky M., MacPherson R., “On the topology of algebraic torus actions”, Algebraic groups: Proc. Symp., Utrecht, 1986, Lect. Notes Math., 1271, Springer, Berlin, 1987, 73–90 | DOI | MR

[17] Kapranov M.M., “Chow quotients of Grassmannians. I”, I. M. Gelfand seminar, Pt. 2, Adv. Sov. Math., 16, Amer. Math. Soc., Providence, RI, 1993, 29–110 | MR | Zbl

[18] Karshon Y., Tolman S., “Classification of Hamiltonian torus actions with two-dimensional quotients”, Geom. Topol., 18:2 (2014), 669–716 | DOI | MR | Zbl

[19] Karshon Y., Tolman S., “Topology of complexity one quotients”, Pac. J. Math., 308:2 (2020), 332–346 | DOI | MR

[20] Keel S., “Intersection theory of moduli space of stable $n$-pointed curves of genus zero”, Trans. Amer. Math. Soc., 330:2 (1992), 545–574 | MR | Zbl

[21] Keel S., Tevelev J., “Geometry of Chow quotients of Grassmannians”, Duke Math. J., 134:2 (2006), 259–311 | DOI | MR | Zbl

[22] Kirwan F.C., Cohomology of quotients in symplectic and algebraic geometry, Math. Notes, 31, Princeton Univ. Press, Princeton, NJ, 1984 | MR | Zbl

[23] Klemyatin N., Universal spaces of parameters for complex Grassmann manifolds $G_{q+1,2}$, E-print, 2019, arXiv: 1905.03047 [math.AT]

[24] Knudsen F.F., “The projectivity of the moduli space of stable curves. II: The stacks $M_{g,n}$”, Math. Scand., 52:2 (1983), 161–199 | DOI | MR | Zbl

[25] Lee E., Masuda M., “Generic torus orbit closures in Schubert varieties”, J. Comb. Theory. Ser. A, 170 (2020), 105143 | DOI | MR | Zbl

[26] Lee E., Masuda M., Park S., “Torus orbit closures in flag varieties and retractions on Weyl groups”, Int. J. Math., 33:4 (2022), 2250028 ; arXiv: 1908.08310 [math.CO] | DOI | MR | Zbl

[27] Li L., “Wonderful compactification of an arrangement of subvarieties”, Mich. Math. J., 58:2 (2009), 535–563 | MR | Zbl

[28] McDuff D., Salamon D., $J$-holomorphic curves and symplectic topology, AMS Colloq. Publ., 52, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[29] M. Noji and K. Ogiwara, “The smooth torus orbit closures in the Grassmannians”, Proc. Steklov Inst. Math., 305 (2019), 251–261 | DOI | MR | Zbl

[30] Smale S., “Generalized Poincaré's conjecture in dimensions greater than four”, Ann. Math. Ser. 2, 74 (1961), 391–406 | DOI | MR | Zbl

[31] Süß H., “Toric topology of the Grassmannian of planes in $\mathbb {C}^5$ and the del Pezzo surface of degree 5”, Moscow Math. J., 21:3 (2021), 639–652 | DOI | MR | Zbl

[32] Timashev D., “Torus actions of complexity one”, Toric topology: Int. Conf., Osaka, 2006, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 349–364 | DOI | MR | Zbl