The Second Cohomology of Regular Semisimple Hessenberg Varieties from GKM Theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 5-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the second cohomology of a regular semisimple Hessenberg variety by generators and relations explicitly in terms of GKM theory. The cohomology of a regular semisimple Hessenberg variety becomes a module of a symmetric group $\mathfrak {S}_n$ by the dot action introduced by Tymoczko. As an application of our explicit description, we give a formula describing the isomorphism class of the second cohomology as an $\mathfrak {S}_n$-module. Our formula is not exactly the same as the known formula by Chow or Cho, Hong, and Lee, but they are equivalent. We also discuss its higher degree generalization.
Keywords: Hessenberg variety, GKM theory, equivariant cohomology
Mots-clés : torus action, permutation module.
@article{TM_2022_317_a0,
     author = {Anton A. Ayzenberg and Mikiya Masuda and Takashi Sato},
     title = {The {Second} {Cohomology} of {Regular} {Semisimple} {Hessenberg} {Varieties} from {GKM} {Theory}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {5--26},
     publisher = {mathdoc},
     volume = {317},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a0/}
}
TY  - JOUR
AU  - Anton A. Ayzenberg
AU  - Mikiya Masuda
AU  - Takashi Sato
TI  - The Second Cohomology of Regular Semisimple Hessenberg Varieties from GKM Theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 5
EP  - 26
VL  - 317
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_317_a0/
LA  - ru
ID  - TM_2022_317_a0
ER  - 
%0 Journal Article
%A Anton A. Ayzenberg
%A Mikiya Masuda
%A Takashi Sato
%T The Second Cohomology of Regular Semisimple Hessenberg Varieties from GKM Theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 5-26
%V 317
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_317_a0/
%G ru
%F TM_2022_317_a0
Anton A. Ayzenberg; Mikiya Masuda; Takashi Sato. The Second Cohomology of Regular Semisimple Hessenberg Varieties from GKM Theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 5-26. http://geodesic.mathdoc.fr/item/TM_2022_317_a0/

[1] Abe H., Harada M., Horiguchi T., Masuda M., “The cohomology rings of regular nilpotent Hessenberg varieties in Lie type A”, Int. Math. Res. Not., 2019:17 (2019), 5316–5388 | DOI | MR | Zbl

[2] Abe H., Horiguchi T., “A survey of recent developments on Hessenberg varieties”, Schubert calculus and its applications in combinatorics and representation theory, Springer Proc. Math. Stat., 332, Springer, Singapore, 2020, 251–279 | MR | Zbl

[3] Abe H., Horiguchi T., Masuda M., “The cohomology rings of regular semisimple Hessenberg varieties for $h=(h(1),n,\dots ,n)$”, J. Comb., 10:1 (2019), 27–59 | MR | Zbl

[4] Białynicki-Birula A., Carrell J.B., McGovern W.M., Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action, Encycl. Math. Sci., 131, Springer, Berlin, 2002 | MR

[5] Brosnan P., Chow T.Y., “Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties”, Adv. Math., 329 (2018), 955–1001 | DOI | MR | Zbl

[6] Cho S., Hong J., Lee E., Permutation module decomposition of the second cohomology of a regular semisimple Hessenberg variety, E-print, 2021, arXiv: 2107.00863 [math.AG]

[7] Chow T., $e$-Positivity of the coefficient of $t$ in $X_G(t)$, E-print, 2015 http://timothychow.net/h2.pdf

[8] Dahlberg S., van Willigenburg S., “Lollipop and lariat symmetric functions”, SIAM J. Discrete Math., 32:2 (2018), 1029–1039 | DOI | MR | Zbl

[9] De Mari F., Procesi C., Shayman M.A., “Hessenberg varieties”, Trans. Amer. Math. Soc., 332:2 (1992), 529–534 | DOI | MR | Zbl

[10] Fukukawa Y., Ishida H., Masuda M., “The cohomology ring of the GKM graph of a flag manifold of classical type”, Kyoto J. Math., 54:3 (2014), 653–677 | DOI | MR | Zbl

[11] Fulton W., Young tableaux. With applications to representation theory and geometry, LMS Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[12] Goresky M., Kottwitz R., MacPherson R., “Equivariant cohomology, Koszul duality, and the localization theorem”, Invent. math., 131:1 (1998), 25–83 | DOI | MR | Zbl

[13] Guay-Paquet M., A modular law for the chromatic symmetric functions of $(3+1)$-free posets, E-print, 2013, arXiv: 1306.2400v1 [math.CO]

[14] Huh J., Nam S.-Y., Yoo M., “Melting lollipop chromatic quasisymmetric functions and Schur expansion of unicellular LLT polynomials”, Discrete Math., 343:3 (2020), 111728 | DOI | MR | Zbl

[15] Shareshian J., Wachs M.L., “Chromatic quasisymmetric functions”, Adv. Math., 295 (2016), 497–551 | DOI | MR | Zbl

[16] Spanier E.H., Algebraic topology, McGraw-Hill, New York, 1966 | MR | Zbl

[17] Teff N., “Representations on Hessenberg varieties and Young's rule”, Proc. 23rd Int. Conf. on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), Reykjavik, 2011, Discrete Math. Theor. Comput. Sci. Proc., Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2011, 903–914 | MR | Zbl

[18] Tymoczko J.S., “Permutation actions on equivariant cohomology of flag varieties”, Toric topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 365–384 | DOI | MR | Zbl