Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_316_a4, author = {G. A. Bakay}, title = {Characterization of {Large} {Deviation} {Probabilities} for {Regenerative} {Sequences}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {47--63}, publisher = {mathdoc}, volume = {316}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_316_a4/} }
TY - JOUR AU - G. A. Bakay TI - Characterization of Large Deviation Probabilities for Regenerative Sequences JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 47 EP - 63 VL - 316 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_316_a4/ LA - ru ID - TM_2022_316_a4 ER -
G. A. Bakay. Characterization of Large Deviation Probabilities for Regenerative Sequences. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 47-63. http://geodesic.mathdoc.fr/item/TM_2022_316_a4/
[1] G. A. Bakay, “Large deviations for a terminating compound renewal process”, Theory Probab. Appl., 66:2 (2021), 209–227 | DOI | Zbl
[2] G. A. Bakay and A. V. Shklyaev, “Large deviations of generalized renewal process”, Discrete Math. Appl., 30:4 (2020), 215–241 | DOI | MR | Zbl
[3] A. A. Borovkov, “On the Cramér transform, large deviations in boundary value problems, and the conditional invariance principle”, Sib. Math. J., 36:3 (1995), 417–434 | DOI | MR | Zbl
[4] A. A. Borovkov and A. A. Mogul'skii, “The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks”, Sib. Math. J., 37:4 (1996), 647–682 | DOI | MR | Zbl
[5] A. A. Borovkov and A. A. Mogul'skii, “Limit theorems in the boundary hitting problem for a multidimensional random walk”, Sib. Math. J., 42:2 (2001), 245–270 | DOI | MR | Zbl
[6] A. A. Borovkov and A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. I”, Sib. Math. J., 59:3 (2018), 383–402 | DOI | MR | Zbl
[7] A. A. Borovkov and A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. II”, Sib. Math. J., 59:4 (2018), 578–597 | DOI | MR | Zbl
[8] Joutard C., “Strong large deviations for arbitrary sequences of random variables”, Ann. Inst. Stat. Math., 65:1 (2013), 49–67 | DOI | MR | Zbl
[9] M. V. Kozlov, “On large deviations of maximum of a Cramér random walk and the queueing process”, Theory Probab. Appl., 58:1 (2014), 76–106 | DOI | MR | Zbl
[10] Mogulskii A.A., “Lokalnye teoremy dlya arifmeticheskikh obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera”, Sib. elektron. mat. izv., 16 (2019), 21–41 | Zbl
[11] Mogulskii A.A., Prokopenko E.I., “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. I”, Sib. elektron. mat. izv., 15 (2018), 475–502 | Zbl
[12] Mogulskii A.A., Prokopenko E.I., “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. II”, Sib. elektron. mat. izv., 15 (2018), 503–527 | Zbl
[13] Mogulskii A.A., Prokopenko E.I., “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. III”, Sib. elektron. mat. izv., 15 (2018), 528–553 | Zbl
[14] A. A. Mogul'skii and E. I. Prokopenko, “Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition”, Sib. Adv. Math., 30:4 (2020), 284–302 | DOI | MR
[15] A. V. Shklyaev, “Limit theorems for random walk under the assumption of maxima large deviation”, Theory Probab. Appl., 55:3 (2011), 517–525 | DOI | MR | Zbl