Characterization of Large Deviation Probabilities for Regenerative Sequences
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 47-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

Local theorems are considered for additive functionals of regenerative sequences, which are sequences of random vectors $\{S_n\}_{n\ge 0}$ of special form. Two cases of renewal are considered: proper and terminating renewal. Under the assumption that all renewal cycles satisfy the Cramér condition, in the case of proper renewal, A. A. Borovkov, A. A. Mogulskii and E. I. Prokopenko, as well as A. V. Shklyaev and G. A. Bakay, obtained exact asymptotics for large deviation probabilities $\mathbf P(S_n=x)\sim {D(x/n)}n^{-d/2}\exp (-L(x/n)n)$, $n\to \infty $, which are uniform with respect to $x/n=x(n)/n\in \mathbb R^d$ in compact sets, with certain functions $D$ and $L$. In the case of terminating renewal, similar results were obtained by Bakay; moreover, one more deviation zone was distinguished in which the result has the form $\mathbf P(S_n=x) \sim {D_0(x/n)}{n^{-(d-1)/2}}\exp (-L_0(x/n)n)$, $n\to \infty $, with certain functions $D_0$ and $L_0$. This relation holds uniformly with respect to $x/n=x(n)/n\in \mathbb R^d$ in compact sets. In the present paper, an alternative method is found for calculating the functions appearing in the asymptotics, and equivalent conditions are obtained for the theorems.
Keywords: local theorems, large deviations, random sequences with renewal, terminating renewal.
@article{TM_2022_316_a4,
     author = {G. A. Bakay},
     title = {Characterization of {Large} {Deviation} {Probabilities} for {Regenerative} {Sequences}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {47--63},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_316_a4/}
}
TY  - JOUR
AU  - G. A. Bakay
TI  - Characterization of Large Deviation Probabilities for Regenerative Sequences
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 47
EP  - 63
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_316_a4/
LA  - ru
ID  - TM_2022_316_a4
ER  - 
%0 Journal Article
%A G. A. Bakay
%T Characterization of Large Deviation Probabilities for Regenerative Sequences
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 47-63
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_316_a4/
%G ru
%F TM_2022_316_a4
G. A. Bakay. Characterization of Large Deviation Probabilities for Regenerative Sequences. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 47-63. http://geodesic.mathdoc.fr/item/TM_2022_316_a4/

[1] G. A. Bakay, “Large deviations for a terminating compound renewal process”, Theory Probab. Appl., 66:2 (2021), 209–227 | DOI | Zbl

[2] G. A. Bakay and A. V. Shklyaev, “Large deviations of generalized renewal process”, Discrete Math. Appl., 30:4 (2020), 215–241 | DOI | MR | Zbl

[3] A. A. Borovkov, “On the Cramér transform, large deviations in boundary value problems, and the conditional invariance principle”, Sib. Math. J., 36:3 (1995), 417–434 | DOI | MR | Zbl

[4] A. A. Borovkov and A. A. Mogul'skii, “The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks”, Sib. Math. J., 37:4 (1996), 647–682 | DOI | MR | Zbl

[5] A. A. Borovkov and A. A. Mogul'skii, “Limit theorems in the boundary hitting problem for a multidimensional random walk”, Sib. Math. J., 42:2 (2001), 245–270 | DOI | MR | Zbl

[6] A. A. Borovkov and A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. I”, Sib. Math. J., 59:3 (2018), 383–402 | DOI | MR | Zbl

[7] A. A. Borovkov and A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. II”, Sib. Math. J., 59:4 (2018), 578–597 | DOI | MR | Zbl

[8] Joutard C., “Strong large deviations for arbitrary sequences of random variables”, Ann. Inst. Stat. Math., 65:1 (2013), 49–67 | DOI | MR | Zbl

[9] M. V. Kozlov, “On large deviations of maximum of a Cramér random walk and the queueing process”, Theory Probab. Appl., 58:1 (2014), 76–106 | DOI | MR | Zbl

[10] Mogulskii A.A., “Lokalnye teoremy dlya arifmeticheskikh obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera”, Sib. elektron. mat. izv., 16 (2019), 21–41 | Zbl

[11] Mogulskii A.A., Prokopenko E.I., “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. I”, Sib. elektron. mat. izv., 15 (2018), 475–502 | Zbl

[12] Mogulskii A.A., Prokopenko E.I., “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. II”, Sib. elektron. mat. izv., 15 (2018), 503–527 | Zbl

[13] Mogulskii A.A., Prokopenko E.I., “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. III”, Sib. elektron. mat. izv., 15 (2018), 528–553 | Zbl

[14] A. A. Mogul'skii and E. I. Prokopenko, “Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition”, Sib. Adv. Math., 30:4 (2020), 284–302 | DOI | MR

[15] A. V. Shklyaev, “Limit theorems for random walk under the assumption of maxima large deviation”, Theory Probab. Appl., 55:3 (2011), 517–525 | DOI | MR | Zbl