Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_316_a19, author = {Yu. L. Pavlov and I. A. Cheplyukova}, title = {Sizes of {Trees} in a {Random} {Forest} and {Configuration} {Graphs}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {298--315}, publisher = {mathdoc}, volume = {316}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_316_a19/} }
TY - JOUR AU - Yu. L. Pavlov AU - I. A. Cheplyukova TI - Sizes of Trees in a Random Forest and Configuration Graphs JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 298 EP - 315 VL - 316 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_316_a19/ LA - ru ID - TM_2022_316_a19 ER -
Yu. L. Pavlov; I. A. Cheplyukova. Sizes of Trees in a Random Forest and Configuration Graphs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 298-315. http://geodesic.mathdoc.fr/item/TM_2022_316_a19/
[1] Bollobas B., “A probabilistic proof of an asymptotic formula for the number of labelled regular graphs”, Eur. J. Comb., 1:4 (1980), 311–316 | DOI | MR | Zbl
[2] Durrett R., Random graph dynamics, Cambridge Ser. Stat. Probab. Math., 20, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl
[3] Dwass M., “The total progeny in a branching process and a related random walk”, J. Appl. Probab., 6:3 (1969), 682–686 | DOI | MR | Zbl
[4] W. Feller, An Introduction to Probability Theory and Its Applications, v. 2, J. Wiley and Sons, New York, 1971 | MR | MR | Zbl
[5] Van der Hofstad R., Random graphs and complex networks, v. 1, Cambridge Ser. Stat. Probab. Math., 43, Cambridge Univ. Press, Cambridge, 2017 | MR | Zbl
[6] Van der Hofstad R., Random graphs and complex networks, v. 2. To appear, Cambridge Univ. Press., Cambridge | Zbl
[7] I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff Publ., Groningen, 1971 | MR | Zbl
[8] N. I. Kazimirov and Yu. L. Pavlov, “A remark on the Galton–Watson forests”, Discrete Math. Appl., 10:1 (2000), 49–62 | DOI | MR | Zbl
[9] V. F. Kolchin, Random Mappings, Optim. Softw., New York, 1986 | MR | Zbl
[10] V. F. Kolchin, Random Graphs, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[11] A. B. Mukhin, “Local limit theorems for lattice random variables”, Theory Probab. Appl., 36:4 (1992), 698–713 | DOI | MR
[12] Yu. L. Pavlov, “Limit distributions of the number of trees of a given size in a random forest”, Discrete Math. Appl., 6:2 (1996), 117–133 | DOI | MR | Zbl
[13] Pavlov Yu.L., Random forests, VSP, Utrecht, 2000 | MR
[14] Yu. L. Pavlov, “The maximum tree of a random forest in the configuration graph”, Sb. Math., 212:9 (2021), 1329–1346 | DOI | MR | Zbl