On Series of $H$-Equivalent Tuples in Markov Chains
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 270-284
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathbf {X}=(X_0,X_1,\ldots )$ be an irreducible Markov chain with state set $\{1,\ldots ,N\}$ and $H$ be a permutation group on the set $\{1,\ldots ,N\}$. We prove limit theorems for the number of series of $H$-equivalent $s$-tuples that start before time $n$ inclusive. These results continue the series of our works within the research direction initiated in the 1970s by A. M. Zubkov and other authors.
Mots-clés :
Markov chain, $H$-equivalent tuples, Poisson limit theorem.
@article{TM_2022_316_a17,
author = {V. G. Mikhailov and A. M. Shoitov and A. V. Volgin},
title = {On {Series} of $H${-Equivalent} {Tuples} in {Markov} {Chains}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {270--284},
publisher = {mathdoc},
volume = {316},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2022_316_a17/}
}
TY - JOUR AU - V. G. Mikhailov AU - A. M. Shoitov AU - A. V. Volgin TI - On Series of $H$-Equivalent Tuples in Markov Chains JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 270 EP - 284 VL - 316 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_316_a17/ LA - ru ID - TM_2022_316_a17 ER -
V. G. Mikhailov; A. M. Shoitov; A. V. Volgin. On Series of $H$-Equivalent Tuples in Markov Chains. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 270-284. http://geodesic.mathdoc.fr/item/TM_2022_316_a17/