On Series of $H$-Equivalent Tuples in Markov Chains
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 270-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbf {X}=(X_0,X_1,\ldots )$ be an irreducible Markov chain with state set $\{1,\ldots ,N\}$ and $H$ be a permutation group on the set $\{1,\ldots ,N\}$. We prove limit theorems for the number of series of $H$-equivalent $s$-tuples that start before time $n$ inclusive. These results continue the series of our works within the research direction initiated in the 1970s by A. M. Zubkov and other authors.
Mots-clés : Markov chain, $H$-equivalent tuples, Poisson limit theorem.
@article{TM_2022_316_a17,
     author = {V. G. Mikhailov and A. M. Shoitov and A. V. Volgin},
     title = {On {Series} of $H${-Equivalent} {Tuples} in {Markov} {Chains}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {270--284},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_316_a17/}
}
TY  - JOUR
AU  - V. G. Mikhailov
AU  - A. M. Shoitov
AU  - A. V. Volgin
TI  - On Series of $H$-Equivalent Tuples in Markov Chains
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 270
EP  - 284
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_316_a17/
LA  - ru
ID  - TM_2022_316_a17
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%A A. M. Shoitov
%A A. V. Volgin
%T On Series of $H$-Equivalent Tuples in Markov Chains
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 270-284
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_316_a17/
%G ru
%F TM_2022_316_a17
V. G. Mikhailov; A. M. Shoitov; A. V. Volgin. On Series of $H$-Equivalent Tuples in Markov Chains. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 270-284. http://geodesic.mathdoc.fr/item/TM_2022_316_a17/

[1] Barbour A.D., Holst L., Janson S., Poisson approximation, Oxford Univ. Press, Oxford, 1992 | MR | Zbl

[2] S. M. Buravlev, “Matchings up to permutations in sequences of independent trials”, Discrete Math. Appl., 9:1 (1999), 53–78 | DOI | MR | Zbl

[3] S. M. Buravlev, “Matchings up to the permutations which form a Latin rectangle”, Discrete Math. Appl., 10:1 (2000), 23–48 | DOI | MR | Zbl

[4] F. R. Gantmacher, The Theory of Matrices, AMS Chelsea Publ., Providence, RI, 1998 | MR | MR

[5] Karlin S., Ost F., “Some monotonicity properties of Schur powers of matrices and related inequalities”, Linear Algebra Appl., 68 (1985), 47–65 | DOI | MR | Zbl

[6] V. F. Kolchin and V. P. Chistyakov, “Limit distributions of the number of non-occurring $s$-tuples in a multinomial scheme”, Theory Probab. Appl., 19:4 (1975), 822–830 | DOI | MR | Zbl

[7] V. G. Mikhailov, “Limit distribution of random variables associated with multiple long duplications in a sequence of independent trials”, Theory Probab. Appl., 19:1 (1974), 180–184 | DOI | MR | Zbl

[8] V. G. Mikhailov, “Estimates of accuracy of the Poisson approximation for the distribution of number of runs of long string repetitions in a Markov chain”, Discrete Math. Appl., 26:2 (2016), 105–113 | MR | MR

[9] V. G. Mikhailov, “On the reduction property of the number of $H$-equivalent tuples of states in a discrete Markov chain”, Discrete Math. Appl., 28:2 (2018), 75–82 | DOI | MR | MR | Zbl

[10] V. G. Mikhailov and A. M. Shoitov, “Structural equivalence of $s$-tuples in random discrete sequences”, Discrete Math. Appl., 13:6 (2003), 541–568 | DOI | MR | Zbl

[11] V. G. Mikhailov and A. M. Shoitov, “On repetitions of long tuples in a Markov chain”, Discrete Math. Appl., 25:5 (2015), 295–303 | MR

[12] Mikhailov V.G., Shoitov A.M., “Mnogokratnye povtoreniya dlinnykh tsepochek v tsepi Markova”, Mat. vopr. kriptogr., 6:3 (2015), 117–134 | MR

[13] Mikhailov V.G., Shoitov A.M., Volgin A.V., “O strukturnoi ekvivalentnosti $s$-tsepochek v tsepyakh Markova”, Probabilistic Methods in Discrete Mathematics: Extended Abstr., IX Int. Petrozavodsk Conf. (Petrozavodsk, 2016), Petrozavodsk, 2016, 57–62

[14] Shoitov A.M., “Ob odnoi osobennosti asimptoticheskogo povedeniya chisla naborov $H$-ekvivalentnykh $n$-tsepochek v neravnoveroyatnoi polinomialnoi skheme”, Trudy po diskretnoi matematike, v. 7, Fizmatlit, M., 2003, 227–238

[15] A. M. Zubkov, “Inequalities for the distribution of a sum of functions of independent random variables”, Math. Notes, 22:5 (1977), 906–914 | DOI | MR | Zbl

[16] A. M. Zubkov and V. G. Mikhailov, “Limit distributions of random variables associated with long duplications in a sequence of independent trials”, Theory Probab. Appl., 19:1 (1974), 172–179 | DOI | MR | Zbl

[17] A. M. Zubkov and V. G. Mikhailov, “Repetitions of $s$-tuples in a sequence of independent trials”, Theory Probab. Appl., 24:2 (1980), 269–282 | DOI | MR | Zbl | Zbl