Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_316_a12, author = {Wenming Hong and Shengli Liang and Xiaoyue Zhang}, title = {Conditional $L^1${-Convergence} for the {Martingale} of a {Critical} {Branching} {Process} in {Random} {Environment}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {195--206}, publisher = {mathdoc}, volume = {316}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_316_a12/} }
TY - JOUR AU - Wenming Hong AU - Shengli Liang AU - Xiaoyue Zhang TI - Conditional $L^1$-Convergence for the Martingale of a Critical Branching Process in Random Environment JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 195 EP - 206 VL - 316 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_316_a12/ LA - ru ID - TM_2022_316_a12 ER -
%0 Journal Article %A Wenming Hong %A Shengli Liang %A Xiaoyue Zhang %T Conditional $L^1$-Convergence for the Martingale of a Critical Branching Process in Random Environment %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 195-206 %V 316 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2022_316_a12/ %G ru %F TM_2022_316_a12
Wenming Hong; Shengli Liang; Xiaoyue Zhang. Conditional $L^1$-Convergence for the Martingale of a Critical Branching Process in Random Environment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 195-206. http://geodesic.mathdoc.fr/item/TM_2022_316_a12/