Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 169-194

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a $d$-type supercritical branching process $Z_n^i=(Z_n^i(1),\ldots ,Z_n^i(d))$, $n\geq 0$, in an independent and identically distributed random environment $\xi =(\xi _0,\xi _1,\ldots )$, starting with one initial particle of type $i$. In a previous paper we have established a Kesten–Stigum type theorem for $Z_n^i$, which implies that for any $1\leq i,j\leq d$, $Z_n^i(j)/\mathbb E_\xi Z_n^i(j) \to W^i$ in probability as $n \to +\infty $, where $\mathbb E_\xi Z_n^i(j)$ is the conditional expectation of $Z_n^i(j)$ given the environment $\xi $ and $W^i$ is a non-negative and finite random variable. The goal of this paper is to obtain a necessary and sufficient condition for the convergence in $L^p$ of $Z_n^i(j)/\mathbb E_\xi Z_n^i(j)$, and to prove that the convergence rate is exponential. To this end, we first establish the corresponding results for the fundamental martingale $(W_n^i)$ associated to the branching process $(Z_n^i)$.
@article{TM_2022_316_a11,
     author = {Ion Grama and Quansheng Liu and Erwan Pin},
     title = {Convergence in $L^p$ for a {Supercritical} {Multi-type} {Branching} {Process} in a {Random} {Environment}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {169--194},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_316_a11/}
}
TY  - JOUR
AU  - Ion Grama
AU  - Quansheng Liu
AU  - Erwan Pin
TI  - Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 169
EP  - 194
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_316_a11/
LA  - ru
ID  - TM_2022_316_a11
ER  - 
%0 Journal Article
%A Ion Grama
%A Quansheng Liu
%A Erwan Pin
%T Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 169-194
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_316_a11/
%G ru
%F TM_2022_316_a11
Ion Grama; Quansheng Liu; Erwan Pin. Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 169-194. http://geodesic.mathdoc.fr/item/TM_2022_316_a11/