Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_316_a11, author = {Ion Grama and Quansheng Liu and Erwan Pin}, title = {Convergence in $L^p$ for a {Supercritical} {Multi-type} {Branching} {Process} in a {Random} {Environment}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {169--194}, publisher = {mathdoc}, volume = {316}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_316_a11/} }
TY - JOUR AU - Ion Grama AU - Quansheng Liu AU - Erwan Pin TI - Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 169 EP - 194 VL - 316 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_316_a11/ LA - ru ID - TM_2022_316_a11 ER -
%0 Journal Article %A Ion Grama %A Quansheng Liu %A Erwan Pin %T Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 169-194 %V 316 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2022_316_a11/ %G ru %F TM_2022_316_a11
Ion Grama; Quansheng Liu; Erwan Pin. Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 169-194. http://geodesic.mathdoc.fr/item/TM_2022_316_a11/
[1] Afanasyev V.I., “On the maximum of a subcritical branching process in a random environment”, Stoch. Process. Appl., 93:1 (2001), 87–107 | DOI | MR | Zbl
[2] Athreya K.B., Karlin S., “On branching processes with random environments. I: Extinction probabilities”, Ann. Math. Stat., 42:5 (1971), 1499–1520 | DOI | MR | Zbl
[3] Athreya K.B., Karlin S., “Branching processes with random environments. II: Limit theorems”, Ann. Math. Stat., 42:6 (1971), 1843–1858 | DOI | MR | Zbl
[4] Athreya K.B., Ney P.E., Branching processes, Grundl. Math. Wiss., 196, Springer, Berlin, 1972 | MR | Zbl
[5] Bansaye V., “Cell contamination and branching processes in a random environment with immigration”, Adv. Appl. Probab., 41:4 (2009), 1059–1081 | DOI | MR | Zbl
[6] Biggins J.D., Cohn H., Nerman O., “Multi-type branching in varying environment”, Stoch. Process. Appl., 83:2 (1999), 357–400 | DOI | MR | Zbl
[7] Buraczewski D., Damek E., Guivarc'h Y., Mentemeier S., “On multidimensional Mandelbrot cascades”, J. Difference Eqns. Appl., 20:11 (2014), 1523–1567 | DOI | MR | Zbl
[8] Chow Y.S., Teicher H., Probability theory: Independence, interchangeability, martingales, Springer, New York, 2012 | MR
[9] Cohn H., “On the growth of the multitype supercritical branching process in a random environment”, Ann. Probab., 17:3 (1989), 1118–1123 | DOI | MR | Zbl
[10] Furstenberg H., Kesten H., “Products of random matrices”, Ann. Math. Stat., 31:2 (1960), 457–469 | DOI | MR | Zbl
[11] Grama I., Liu Q., Miqueu E., “Berry–Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment”, Stoch. Process. Appl., 127:4 (2017), 1255–1281 | DOI | MR | Zbl
[12] Grama I., Liu Q., Pin E., “A Kesten–Stigum type theorem for a supercritical multi-type branching process in a random environment”, Ann. Appl. Probab. (to appear); Preprint hal-02878026, 2020 https://hal.archives-ouvertes.fr/hal-02878026
[13] Grama I., Liu Q., Pin E., Berry–Esseen's bound and harmonic moments for supercritical multi-type branching processes in random environments, Preprint hal-02911865, 2020 https://hal.archives-ouvertes.fr/hal-02911865
[14] Grama I., Liu Q., Pin E., Cramér type moderate deviation expansion for a supercritical multi-type branching process in a random environment, Preprint hal-02934081, 2020 https://hal.archives-ouvertes.fr/hal-02934081
[15] Guivarc'h Y., Liu Q., “Propriétés asymptotiques des processus de branchement en environnement aléatoire”, C. r. Acad. sci. Paris. Sér. I. Math., 332:4 (2001), 339–344 | DOI | MR
[16] Hennion H., “Limit theorems for products of positive random matrices”, Ann. Probab., 25:4 (1997), 1545–1587 | DOI | MR | Zbl
[17] Hong W., Zhang L., “Branching structure for the transient $(1,R)$-random walk in random environment and its applications”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13:4 (2010), 589–618 | DOI | MR | Zbl
[18] Huang C., Liu Q., “Moments, moderate and large deviations for a branching process in a random environment”, Stoch. Process. Appl., 122:2 (2012), 522–545 | DOI | MR | Zbl
[19] Huang C., Liu Q., “Convergence in $L_p$ and its exponential rate for a branching process in a random environment”, Electron. J. Probab., 19 (2014) | DOI | MR
[20] Jones O.D., “On the convergence of multitype branching processes with varying environments”, Ann. Appl. Probab., 7:3 (1997), 772–801 | DOI | MR | Zbl
[21] Kesten H., Kozlov M.V., Spitzer F., “A limit law for random walk in a random environment”, Compos. math., 30 (1975), 145–168 | MR | Zbl
[22] Kersting G., Vatutin V., Discrete time branching processes in random environment, J. Wiley Sons, Hoboken, NJ, 2017 | Zbl
[23] Key E.S., “Limiting distributions and regeneration times for multitype branching processes with immigration in a random environment”, Ann. Probab., 15:1 (1987), 344–353 | DOI | MR | Zbl
[24] Le Page E., “Théorèmes limites pour les produits de matrices aléatoires”, Probability measures on groups, Proc. Sixth Conf. (Oberwolfach, 1981), Lect. Notes Math., 928, Springer, Berlin, 1982, 258–303 | DOI | MR
[25] Le Page E., Peigné M., Pham C., “The survival probability of a critical multi-type branching process in i.i.d. random environment”, Ann. Probab., 46:5 (2018), 2946–2972 | MR | Zbl
[26] X. Liang and Q. Liu, “Weighted moments of the limit of a branching process in a random environment”, Proc. Steklov Inst. Math., 282 (2013), 127–145 | DOI | MR | Zbl
[27] Liu Q., “Local dimensions of the branching measure on a Galton–Watson tree”, Ann. Inst. Henri Poincaré. Probab. stat., 37:2 (2001), 195–222 | DOI | MR | Zbl
[28] Seneta E., Non-negative matrices and Markov chains, Springer, New York, 1981 | MR | Zbl
[29] V. A. Vatutin, “Polling systems and multitype branching processes in random environment with final product”, Theory Probab. Appl., 55:4 (2011), 631–660 | DOI | MR | Zbl
[30] V. A. Vatutin and E. E. Dyakonova, “Multitype branching processes in random environment: Probability of survival for the critical case”, Theory Probab. Appl., 62:4 (2018), 506–521 | DOI | MR | Zbl
[31] Wang Y., Liu Q., “Limit theorems for a supercritical branching process with immigration in a random environment”, Sci. China. Math., 60:12 (2017), 2481–2502 | DOI | MR | Zbl