Voir la notice du chapitre de livre
@article{TM_2021_315_a9,
author = {A. A. Krasovskiy and A. S. Platov},
title = {Algorithm for {Solving} a {Problem} of {Optimal} {Control} of {Structured} {Populations} {Interacting} at {Stationary} {States}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {151--159},
year = {2021},
volume = {315},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a9/}
}
TY - JOUR AU - A. A. Krasovskiy AU - A. S. Platov TI - Algorithm for Solving a Problem of Optimal Control of Structured Populations Interacting at Stationary States JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 151 EP - 159 VL - 315 UR - http://geodesic.mathdoc.fr/item/TM_2021_315_a9/ LA - ru ID - TM_2021_315_a9 ER -
%0 Journal Article %A A. A. Krasovskiy %A A. S. Platov %T Algorithm for Solving a Problem of Optimal Control of Structured Populations Interacting at Stationary States %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 151-159 %V 315 %U http://geodesic.mathdoc.fr/item/TM_2021_315_a9/ %G ru %F TM_2021_315_a9
A. A. Krasovskiy; A. S. Platov. Algorithm for Solving a Problem of Optimal Control of Structured Populations Interacting at Stationary States. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 151-159. http://geodesic.mathdoc.fr/item/TM_2021_315_a9/
[1] Davydov A.A., Platov A.S., “Optimal stationary exploitation of size-structured population with intra-specific competition”, Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., 5, ed. by G. Stefani et al., Springer, Cham, 2014, 123–132 | DOI
[2] Murphy L.F., “A nonlinear growth mechanism in size structured population dynamics”, J. Theor. Biol., 104:4 (1983), 493–506 | DOI
[3] A. A. Panesh and A. S. Platov, “Optimization of size-structured populations with interacting species”, J. Math. Sci., 188:3 (2013), 293–298 | DOI | MR
[4] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964