Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_315_a8, author = {V. N. Kolokoltsov and M. S. Troeva}, title = {Abstract {McKean--Vlasov} and {Hamilton--Jacobi--Bellman} {Equations,} {Their} {Fractional} {Versions} and {Related} {Forward--Backward} {Systems} on {Riemannian} {Manifolds}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {128--150}, publisher = {mathdoc}, volume = {315}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a8/} }
TY - JOUR AU - V. N. Kolokoltsov AU - M. S. Troeva TI - Abstract McKean--Vlasov and Hamilton--Jacobi--Bellman Equations, Their Fractional Versions and Related Forward--Backward Systems on Riemannian Manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 128 EP - 150 VL - 315 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_315_a8/ LA - ru ID - TM_2021_315_a8 ER -
%0 Journal Article %A V. N. Kolokoltsov %A M. S. Troeva %T Abstract McKean--Vlasov and Hamilton--Jacobi--Bellman Equations, Their Fractional Versions and Related Forward--Backward Systems on Riemannian Manifolds %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 128-150 %V 315 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2021_315_a8/ %G ru %F TM_2021_315_a8
V. N. Kolokoltsov; M. S. Troeva. Abstract McKean--Vlasov and Hamilton--Jacobi--Bellman Equations, Their Fractional Versions and Related Forward--Backward Systems on Riemannian Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 128-150. http://geodesic.mathdoc.fr/item/TM_2021_315_a8/
[1] Agrawal O.P., “Generalized variational problems and Euler–Lagrange equations”, Comput. Math. Appl., 59:5 (2010), 1852–1864 | DOI | MR
[2] Applebaum D., Brockway R.S., “$L_2$ properties of Lévy generators on compact Riemannian manifolds”, J. Theor. Probab., 34:2 (2021), 1029–1042 ; arXiv: 1907.11123v2 [math.PR] | DOI
[3] Atanackovic T., Dolicanin D., Pilipovic S., Stankovic B., “Cauchy problems for some classes of linear fractional differential equations”, Fract. Calc. Appl. Anal., 17:4 (2014), 1039–1059 | DOI | MR
[4] Averboukh Yu., “Deterministic limit of mean field games associated with nonlinear Markov processes”, Appl. Math. Optim., 81:3 (2020), 711–738 | DOI | MR
[5] Azagra D., Ferrera J., López-Mesas F., “Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds”, J. Funct. Anal., 220:2 (2005), 304–361 | DOI | MR
[6] Baleanu D., Diethelm K., Scalas E., Trujillo J.J., Fractional calculus: Models and numerical methods, Ser. Complex. Nonlinearity Chaos, 5, 2nd ed., World Scientific, Hackensack, NJ, 2017
[7] Bensoussan A., Frehse J., Yam Ph., Mean field games and mean field type control theory, Springer Briefs Math., Springer, New York, 2013 | DOI
[8] Carmona R., Delarue F., Probabilistic theory of mean field games with applications. I: Mean field FBSDEs, control, and games, Probab. Theory Stoch. Model., 83, Springer, Cham, 2018
[9] Carmona R., Delarue F., Probabilistic theory of mean field games with applications. II: Mean field games with common noise and master equations, Probab. Theory Stoch. Model., 84, Springer, Cham, 2018
[10] Cesaroni A., Cirant M., Dipierro S., Novaga M., Valdinoci E., “On stationary fractional mean field games”, J. math. pures appl., 122 (2019), 1–22 | DOI | MR
[11] Davies E.B., “Pointwise bounds on the space and time derivatives of heat kernels”, J. Oper. Theory, 21:2 (1989), 367–378
[12] Duncan T.E., Pasik-Duncan B., “Solvable stochastic differential games in rank one compact symmetric spaces”, Int. J. Control, 91:11 (2018), 2445–2450 | DOI
[13] Gomes D.A., Pimentel E.A., Voskanyan V., Regularity theory for mean-field game systems, Springer Briefs Math., Springer, Cham, 2016 | DOI
[14] Grigor'yan A., Heat kernel and analysis on manifolds, AMS/IP Stud. Adv. Math., 47, Amer. Math. Soc., Providence, RI, 2009
[15] Handbook of fractional calculus with applications, v. 2, Fractional differential equations, ed. by A. Kochubei, Yu. Luchko, De Gruyter, Berlin, 2019
[16] Hernández-Hernández M.E., Kolokoltsov V.N., “On the solution of two-sided fractional ordinary differential equations of Caputo type”, Fract. Calc. Appl. Anal., 19:6 (2016), 1393–1413 | DOI | MR
[17] Huang M., Malhamé R., Caines P.E., “Large population stochastic dynamic games: Closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle”, Commun. Inf. Syst., 6:3 (2006), 221–252 | DOI | MR
[18] Kiryakova V., Generalized fractional calculus and applications, Pitman Res. Notes Math. Ser., 301, Longman Scientific Technical, Harlow, 1994
[19] Kochubei A.N., Kondratiev Yu., “Fractional kinetic hierarchies and intermittency”, Kinet. Relat. Models, 10:3 (2017), 725–740 | DOI | MR
[20] Kolokoltsov V.N., Semiclassical analysis for diffusions and stochastic processes, Lect. Notes Math., 1724, Springer, Berlin, 2000 | DOI
[21] V. N. Kolokoltsov, “Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics”, Theory Probab. Appl., 53:4 (2009), 594–609 | DOI | MR
[22] Kolokoltsov V.N., Nonlinear Markov processes and kinetic equations, Cambridge Tracts Math., 182, Cambridge Univ. Press, Cambridge, 2010
[23] Kolokoltsov V.N., Markov processes, semigroups and generators, De Gruyter Stud. Math., 38, De Gruyter, Berlin, 2011
[24] Kolokoltsov V., “On fully mixed and multidimensional extensions of the Caputo and Riemann–Liouville derivatives, related Markov processes and fractional differential equations”, Fract. Calc. Appl. Anal., 18:4 (2015), 1039–1073 ; arXiv: 1501.03925v1 [math.PR] | DOI | MR
[25] Kolokoltsov V., Differential equations on measures and functional spaces, Birkhäuser Adv. Texts. Basler Lehrbücher, Birkhäuser, Cham, 2019 | DOI
[26] Kolokoltsov V.N., “Quantum mean-field games with the observations of counting type”, Games, 12:1 (2021), 7 | DOI | MR
[27] Kolokoltsov V., Lin F., Mijatović A., “Monte Carlo estimation of the solution of fractional partial differential equations”, Fract. Calc. Appl. Anal., 24:1 (2021), 278–306 | DOI | MR
[28] Kolokoltsov V.N., Malafeyev O.A., Many agent games in socio-economic systems: Corruption, inspection, coalition building, network growth, security, Springer Ser. Oper. Res. Financ. Eng., Springer, Cham, 2019 | DOI
[29] Kolokoltsov V.N., Troeva M., “Regularity and sensitivity for McKean–Vlasov SPDEs”, AIP Conf. Proc., 1907 (2017), 030046 | DOI
[30] Kolokoltsov V.N., Troeva M.S., “Regularity and sensitivity for McKean–Vlasov type SPDEs generated by stable-like processes”, Probl. Anal. Issues Anal., 7:2 (2018), 69–81 | DOI | MR
[31] Kolokoltsov V.N., Troeva M., “On mean field games with common noise and McKean–Vlasov SPDEs”, Stoch. Anal. Appl., 37:4 (2019), 522–549 | DOI | MR
[32] Kolokoltsov V.N., Veretennikova M.A., “A fractional Hamilton Jacobi Bellman equation for scaled limits of controlled continuous time random walks”, Commun. Appl. Ind. Math., 6:1 (2014), e-484 | MR
[33] Kolokoltsov V.N., Veretennikova M.A., “Well-posedness and regularity of the Cauchy problem for nonlinear fractional in time and space equations”, Fract. Differ. Calc., 4:1 (2014), 1–30 ; arXiv: 1402.6735v1 [math.AP] | MR
[34] Kolokoltsov V., Yang W., “Existence of solutions to path-dependent kinetic equations and related forward–backward systems”, Open J. Optim., 2:2 (2013), 39–44 | DOI
[35] Lasry J.-M., Lions P.-L., “Jeux à champ moyen. I: Le cas stationnaire”, C. r. Math. Acad. sci. Paris, 343:9 (2006), 619–625 | DOI | MR
[36] Leonenko N.N., Meerschaert M.M., Sikorskii A., “Correlation structure of fractional Pearson diffusions”, Comput. Math. Appl., 66:5 (2013), 737–745 | DOI | MR
[37] Ludewig M., “Strong short-time asymptotics and convolution approximation of the heat kernel”, Ann. Global Anal. Geom., 55:2 (2019), 371–394 | DOI | MR
[38] Mantegazza C., Mennucci A.C., “Hamilton–Jacobi equations and distance functions on Riemannian manifolds”, Appl. Math. Optim., 47:1 (2002), 1–25 | DOI
[39] Nguyen D.T., Nguyen S.L., Du N.H., “On mean field systems with multi-classes”, Discrete Contin. Dyn. Syst., 40:2 (2020), 683–707 | DOI | MR
[40] Podlubny I., Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Math. Sci. Eng., 198, Academic Press, San Diego, CA, 1999
[41] A. V. Pskhu, “Initial-value problem for a linear ordinary differential equation of noninteger order”, Sb. Math., 202:4 (2011), 571–582 | DOI | MR
[42] Schaefer H.H., Banach lattices and positive operators, Grundl. Math. Wiss., 215, Springer, Berlin, 1974
[43] Tang Q., Camilli F., “Variational time-fractional mean field games”, Dyn. Games Appl., 10:2 (2020), 573–588 | DOI | MR
[44] Zhou Y., Fractional evolution equations and inclusions: Analysis and control, Elsevier, Amsterdam, 2016
[45] Zhu X., “The optimal control related to Riemannian manifolds and the viscosity solutions to Hamilton–Jacobi–Bellman equations”, Syst. Control Lett., 69 (2014), 7–15 | DOI