Abstract McKean--Vlasov and Hamilton--Jacobi--Bellman Equations, Their Fractional Versions and Related Forward--Backward Systems on Riemannian Manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 128-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a class of abstract nonlinear fractional pseudo-differential equations in Banach spaces that includes both the McKean–Vlasov type equations describing nonlinear Markov processes and the Hamilton–Jacobi–Bellman–Isaacs equation of stochastic control and games. This allows for a unified analysis of these equations, which leads to an effective theory of coupled forward–backward systems (forward McKean–Vlasov evolution and backward Hamilton–Jacobi–Bellman–Isaacs evolution) that are central to the modern theory of mean-field games.
Keywords: Fractional McKean–Vlasov type equations on manifolds, fractional Hamilton–Jacobi–Bellman–Isaacs equations on manifolds, fractional forward–backward systems on manifolds, dual Banach triples, mild solutions, Caputo–Dzherbashyan fractional derivative, smoothing and smoothness preserving operator semigroups.
@article{TM_2021_315_a8,
     author = {V. N. Kolokoltsov and M. S. Troeva},
     title = {Abstract {McKean--Vlasov} and {Hamilton--Jacobi--Bellman} {Equations,} {Their} {Fractional} {Versions} and {Related} {Forward--Backward} {Systems} on {Riemannian} {Manifolds}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {128--150},
     publisher = {mathdoc},
     volume = {315},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a8/}
}
TY  - JOUR
AU  - V. N. Kolokoltsov
AU  - M. S. Troeva
TI  - Abstract McKean--Vlasov and Hamilton--Jacobi--Bellman Equations, Their Fractional Versions and Related Forward--Backward Systems on Riemannian Manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 128
EP  - 150
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_315_a8/
LA  - ru
ID  - TM_2021_315_a8
ER  - 
%0 Journal Article
%A V. N. Kolokoltsov
%A M. S. Troeva
%T Abstract McKean--Vlasov and Hamilton--Jacobi--Bellman Equations, Their Fractional Versions and Related Forward--Backward Systems on Riemannian Manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 128-150
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_315_a8/
%G ru
%F TM_2021_315_a8
V. N. Kolokoltsov; M. S. Troeva. Abstract McKean--Vlasov and Hamilton--Jacobi--Bellman Equations, Their Fractional Versions and Related Forward--Backward Systems on Riemannian Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 128-150. http://geodesic.mathdoc.fr/item/TM_2021_315_a8/

[1] Agrawal O.P., “Generalized variational problems and Euler–Lagrange equations”, Comput. Math. Appl., 59:5 (2010), 1852–1864 | DOI | MR

[2] Applebaum D., Brockway R.S., “$L_2$ properties of Lévy generators on compact Riemannian manifolds”, J. Theor. Probab., 34:2 (2021), 1029–1042 ; arXiv: 1907.11123v2 [math.PR] | DOI

[3] Atanackovic T., Dolicanin D., Pilipovic S., Stankovic B., “Cauchy problems for some classes of linear fractional differential equations”, Fract. Calc. Appl. Anal., 17:4 (2014), 1039–1059 | DOI | MR

[4] Averboukh Yu., “Deterministic limit of mean field games associated with nonlinear Markov processes”, Appl. Math. Optim., 81:3 (2020), 711–738 | DOI | MR

[5] Azagra D., Ferrera J., López-Mesas F., “Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds”, J. Funct. Anal., 220:2 (2005), 304–361 | DOI | MR

[6] Baleanu D., Diethelm K., Scalas E., Trujillo J.J., Fractional calculus: Models and numerical methods, Ser. Complex. Nonlinearity Chaos, 5, 2nd ed., World Scientific, Hackensack, NJ, 2017

[7] Bensoussan A., Frehse J., Yam Ph., Mean field games and mean field type control theory, Springer Briefs Math., Springer, New York, 2013 | DOI

[8] Carmona R., Delarue F., Probabilistic theory of mean field games with applications. I: Mean field FBSDEs, control, and games, Probab. Theory Stoch. Model., 83, Springer, Cham, 2018

[9] Carmona R., Delarue F., Probabilistic theory of mean field games with applications. II: Mean field games with common noise and master equations, Probab. Theory Stoch. Model., 84, Springer, Cham, 2018

[10] Cesaroni A., Cirant M., Dipierro S., Novaga M., Valdinoci E., “On stationary fractional mean field games”, J. math. pures appl., 122 (2019), 1–22 | DOI | MR

[11] Davies E.B., “Pointwise bounds on the space and time derivatives of heat kernels”, J. Oper. Theory, 21:2 (1989), 367–378

[12] Duncan T.E., Pasik-Duncan B., “Solvable stochastic differential games in rank one compact symmetric spaces”, Int. J. Control, 91:11 (2018), 2445–2450 | DOI

[13] Gomes D.A., Pimentel E.A., Voskanyan V., Regularity theory for mean-field game systems, Springer Briefs Math., Springer, Cham, 2016 | DOI

[14] Grigor'yan A., Heat kernel and analysis on manifolds, AMS/IP Stud. Adv. Math., 47, Amer. Math. Soc., Providence, RI, 2009

[15] Handbook of fractional calculus with applications, v. 2, Fractional differential equations, ed. by A. Kochubei, Yu. Luchko, De Gruyter, Berlin, 2019

[16] Hernández-Hernández M.E., Kolokoltsov V.N., “On the solution of two-sided fractional ordinary differential equations of Caputo type”, Fract. Calc. Appl. Anal., 19:6 (2016), 1393–1413 | DOI | MR

[17] Huang M., Malhamé R., Caines P.E., “Large population stochastic dynamic games: Closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle”, Commun. Inf. Syst., 6:3 (2006), 221–252 | DOI | MR

[18] Kiryakova V., Generalized fractional calculus and applications, Pitman Res. Notes Math. Ser., 301, Longman Scientific Technical, Harlow, 1994

[19] Kochubei A.N., Kondratiev Yu., “Fractional kinetic hierarchies and intermittency”, Kinet. Relat. Models, 10:3 (2017), 725–740 | DOI | MR

[20] Kolokoltsov V.N., Semiclassical analysis for diffusions and stochastic processes, Lect. Notes Math., 1724, Springer, Berlin, 2000 | DOI

[21] V. N. Kolokoltsov, “Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics”, Theory Probab. Appl., 53:4 (2009), 594–609 | DOI | MR

[22] Kolokoltsov V.N., Nonlinear Markov processes and kinetic equations, Cambridge Tracts Math., 182, Cambridge Univ. Press, Cambridge, 2010

[23] Kolokoltsov V.N., Markov processes, semigroups and generators, De Gruyter Stud. Math., 38, De Gruyter, Berlin, 2011

[24] Kolokoltsov V., “On fully mixed and multidimensional extensions of the Caputo and Riemann–Liouville derivatives, related Markov processes and fractional differential equations”, Fract. Calc. Appl. Anal., 18:4 (2015), 1039–1073 ; arXiv: 1501.03925v1 [math.PR] | DOI | MR

[25] Kolokoltsov V., Differential equations on measures and functional spaces, Birkhäuser Adv. Texts. Basler Lehrbücher, Birkhäuser, Cham, 2019 | DOI

[26] Kolokoltsov V.N., “Quantum mean-field games with the observations of counting type”, Games, 12:1 (2021), 7 | DOI | MR

[27] Kolokoltsov V., Lin F., Mijatović A., “Monte Carlo estimation of the solution of fractional partial differential equations”, Fract. Calc. Appl. Anal., 24:1 (2021), 278–306 | DOI | MR

[28] Kolokoltsov V.N., Malafeyev O.A., Many agent games in socio-economic systems: Corruption, inspection, coalition building, network growth, security, Springer Ser. Oper. Res. Financ. Eng., Springer, Cham, 2019 | DOI

[29] Kolokoltsov V.N., Troeva M., “Regularity and sensitivity for McKean–Vlasov SPDEs”, AIP Conf. Proc., 1907 (2017), 030046 | DOI

[30] Kolokoltsov V.N., Troeva M.S., “Regularity and sensitivity for McKean–Vlasov type SPDEs generated by stable-like processes”, Probl. Anal. Issues Anal., 7:2 (2018), 69–81 | DOI | MR

[31] Kolokoltsov V.N., Troeva M., “On mean field games with common noise and McKean–Vlasov SPDEs”, Stoch. Anal. Appl., 37:4 (2019), 522–549 | DOI | MR

[32] Kolokoltsov V.N., Veretennikova M.A., “A fractional Hamilton Jacobi Bellman equation for scaled limits of controlled continuous time random walks”, Commun. Appl. Ind. Math., 6:1 (2014), e-484 | MR

[33] Kolokoltsov V.N., Veretennikova M.A., “Well-posedness and regularity of the Cauchy problem for nonlinear fractional in time and space equations”, Fract. Differ. Calc., 4:1 (2014), 1–30 ; arXiv: 1402.6735v1 [math.AP] | MR

[34] Kolokoltsov V., Yang W., “Existence of solutions to path-dependent kinetic equations and related forward–backward systems”, Open J. Optim., 2:2 (2013), 39–44 | DOI

[35] Lasry J.-M., Lions P.-L., “Jeux à champ moyen. I: Le cas stationnaire”, C. r. Math. Acad. sci. Paris, 343:9 (2006), 619–625 | DOI | MR

[36] Leonenko N.N., Meerschaert M.M., Sikorskii A., “Correlation structure of fractional Pearson diffusions”, Comput. Math. Appl., 66:5 (2013), 737–745 | DOI | MR

[37] Ludewig M., “Strong short-time asymptotics and convolution approximation of the heat kernel”, Ann. Global Anal. Geom., 55:2 (2019), 371–394 | DOI | MR

[38] Mantegazza C., Mennucci A.C., “Hamilton–Jacobi equations and distance functions on Riemannian manifolds”, Appl. Math. Optim., 47:1 (2002), 1–25 | DOI

[39] Nguyen D.T., Nguyen S.L., Du N.H., “On mean field systems with multi-classes”, Discrete Contin. Dyn. Syst., 40:2 (2020), 683–707 | DOI | MR

[40] Podlubny I., Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Math. Sci. Eng., 198, Academic Press, San Diego, CA, 1999

[41] A. V. Pskhu, “Initial-value problem for a linear ordinary differential equation of noninteger order”, Sb. Math., 202:4 (2011), 571–582 | DOI | MR

[42] Schaefer H.H., Banach lattices and positive operators, Grundl. Math. Wiss., 215, Springer, Berlin, 1974

[43] Tang Q., Camilli F., “Variational time-fractional mean field games”, Dyn. Games Appl., 10:2 (2020), 573–588 | DOI | MR

[44] Zhou Y., Fractional evolution equations and inclusions: Analysis and control, Elsevier, Amsterdam, 2016

[45] Zhu X., “The optimal control related to Riemannian manifolds and the viscosity solutions to Hamilton–Jacobi–Bellman equations”, Syst. Control Lett., 69 (2014), 7–15 | DOI