Optimal Cyclic Harvesting of a Distributed Renewable Resource with Diffusion
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 64-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of optimizing the harvesting of a renewable resource distributed on a circle. The dynamics of the resource restoration process is described by a Kolmogorov–Petrovskii–Piskunov–Fisher type equation in divergence form, and the harvesting of the resource is performed by a machine that moves cyclically along the circle. The objective functional is an average quantity depending on the position of this machine, the difficulty of detecting or harvesting the resource from this position, and the distance of the resource from this position. We prove that there exists an optimal motion of the harvesting machine that maximizes the average time profit in the natural form in the long run when the initial distribution of the resource is not less than the limit value in the absence of harvesting.
@article{TM_2021_315_a4,
     author = {A. O. Belyakov and A. A. Davydov},
     title = {Optimal {Cyclic} {Harvesting} of a {Distributed} {Renewable} {Resource} with {Diffusion}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {64--73},
     publisher = {mathdoc},
     volume = {315},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a4/}
}
TY  - JOUR
AU  - A. O. Belyakov
AU  - A. A. Davydov
TI  - Optimal Cyclic Harvesting of a Distributed Renewable Resource with Diffusion
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 64
EP  - 73
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_315_a4/
LA  - ru
ID  - TM_2021_315_a4
ER  - 
%0 Journal Article
%A A. O. Belyakov
%A A. A. Davydov
%T Optimal Cyclic Harvesting of a Distributed Renewable Resource with Diffusion
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 64-73
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_315_a4/
%G ru
%F TM_2021_315_a4
A. O. Belyakov; A. A. Davydov. Optimal Cyclic Harvesting of a Distributed Renewable Resource with Diffusion. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 64-73. http://geodesic.mathdoc.fr/item/TM_2021_315_a4/

[1] V. I. Arnol'd, “Convex hulls and increasing the output of systems under a pulsating load”, Sib. Math. J., 28:4 (1987), 540–542 | DOI | MR

[2] V. I. Arnold, “Optimization in mean and phase transitions in controlled dynamical systems”, Funct. Anal. Appl., 36:2 (2002), 83–92 | DOI | MR | MR

[3] S. M. Aseev and A. V. Kryazhimskii, “The Pontryagin maximum principle and optimal economic growth problems”, Proc. Steklov Inst. Math., 257 (2007), 1–255 | DOI | MR

[4] S. M. Aseev and V. M. Veliov, “Another view of the maximum principle for infinite-horizon optimal control problems in economics”, Russ. Math. Surv., 74:6 (2019), 963–1011 | DOI | MR

[5] Behringer S., Upmann T., “Optimal harvesting of a spatial renewable resource”, J. Econ. Dyn. Control, 42 (2014), 105–120 | DOI | MR

[6] A. O. Belyakov and A. A. Davydov, “Efficiency optimization for the cyclic use of a renewable resource”, Proc. Steklov Inst. Math., 299:Suppl. 1 (2017), S14–S21

[7] Belyakov A.O., Davydov A.A., Veliov V.M., “Optimal cyclic exploitation of renewable resources”, J. Dyn. Control Syst., 21:3 (2015), 475–494 | DOI | MR

[8] Berestycki H., Hamel F., Roques L., “Analysis of the periodically fragmented environment model. I: Species persistence”, J. Math. Biol., 51:1 (2005), 75–113 | DOI | MR

[9] J. Bregnballe, A Guide to Recirculation Aquaculture: An Introduction to the New Environmentally Friendly and Highly Productive Closed Fish Farming Systems, FAO EUROFISH, Copenhagen, 2010

[10] Carvalho P.G. et al., “Optimized fishing through periodically harvested closures”, J. Appl. Ecol., 56:8 (2019), 1927–1936 | DOI

[11] Cohen P.J., Foale S.J., “Sustaining small-scale fisheries with periodically harvested marine reserves”, Marine Policy, 37 (2013), 278–287 | DOI

[12] A. A. Davydov, “Generic profit singularities in Arnold's model of cyclic processes”, Proc. Steklov Inst. Math., 250 (2005), 70–84

[13] A. A. Davydov, “Existence of optimal stationary states of exploited populations with diffusion”, Proc. Steklov Inst. Math., 310 (2020), 124–130 | DOI

[14] Davydov A., “Optimal steady state of distributed population in periodic environment”, AIP Conf. Proc., 2333 (2021), 120007 | DOI

[15] Davydov A.A., Melnik D.A., “Optimalnye sostoyaniya raspredelennykh ekspluatiruemykh populyatsii s periodicheskim impulsnym otborom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:2 (2021), 99–107 | MR

[16] A. A. Davydov and H. Mena Matos, “Generic phase transitions and profit singularities in Arnol'd's model”, Sb. Math., 198:1 (2007), 17–37 | DOI | MR

[17] Davydov A.A., Mena-Matos H., Moreira C.S., “Generic profit singularities in time averaged optimization for phase transitions in polydynamical systems”, J. Math. Anal. Appl., 424:1 (2015), 704–726 | DOI | MR

[18] Fisher R.A., “The wave of advance of advantageous genes”, Ann. Eugenics, 7:4 (1937), 355–369 | DOI

[19] Kolmogorov A.N., Petrovskii I.G., Piskunov N.S., “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byul. MGU. Matematika i mekhanika, 1:6 (1937), 1–26

[20] Koopman B.O., “The theory of search. III: The optimum distribution of searching effort”, Oper. Res., 5:5 (1957), 613–626 | DOI

[21] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and Quasi-linear Equations of Parabolic Type, Am. Math. Soc., Providence, RI, 1968

[22] Liu P., Shi J., Wang Y., “Periodic solutions of a logistic type population model with harvesting”, J. Math. Anal. Appl., 369:2 (2010), 730–735 | DOI | MR

[23] Maurer H., Büskens Ch., Feichtinger G., “Solution techniques for periodic control problems: A case study in production planning”, Optim. Control Appl. Methods, 19:3 (1998), 185–203 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[24] Mena-Matos H., “Generic profit singularities in time averaged optimization. The case of a control space with a regular boundary”, J. Dyn. Control Syst., 16:1 (2010), 101–120 | DOI | MR

[25] Mena-Matos H., Moreira C., “Generic singularities of the optimal averaged profit among stationary strategies”, J. Dyn. Control Syst., 13:4 (2007), 541–562 | DOI | MR

[26] Tsirlin A.M., Metody usrednennoi optimizatsii i ikh prilozheniya, Nauka, M., 1997

[27] Undersander D.J., Albert B., Porter P., Crossley A., Pastures for profit: A hands on guide to rotational grazing, Publ. A3529, Univ. Wisconsin Coop. Ext., Madison, WI, 1993

[28] Zhikov V.V., “Matematicheskie problemy teorii poiska”, Sbornik nauchnykh trudov Vladimirskogo vechernego politekhnicheskogo instituta. Vyp. 4: Radioelektronika, avtomatika, elektrotekhnika, priborostroenie, matematika, Vyssh. shk., M., 1968, 263–270