Refined Euler–Lagrange Inclusion for an Optimal Control Problem with Discontinuous Integrand
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 34-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study a free-time optimal control problem for a differential inclusion with mixed-type functional in which the integral term contains the characteristic function of a given open set of “undesirable” states of the system. The statement of this problem can be viewed as a weakening of the statement of the classical optimal control problem with state constraints. Using the approximation method, we obtain first-order necessary optimality conditions in the form of the refined Euler–Lagrange inclusion. We also present sufficient conditions for their nondegeneracy and pointwise nontriviality and give an illustrative example.
Keywords: optimal control, differential inclusion, Pontryagin's maximum principle, refined Euler–Lagrange inclusion, state constraint, discontinuous integrand, risk zone.
@article{TM_2021_315_a3,
     author = {S. M. Aseev},
     title = {Refined {Euler{\textendash}Lagrange} {Inclusion} for an {Optimal} {Control} {Problem} with {Discontinuous} {Integrand}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {34--63},
     year = {2021},
     volume = {315},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a3/}
}
TY  - JOUR
AU  - S. M. Aseev
TI  - Refined Euler–Lagrange Inclusion for an Optimal Control Problem with Discontinuous Integrand
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 34
EP  - 63
VL  - 315
UR  - http://geodesic.mathdoc.fr/item/TM_2021_315_a3/
LA  - ru
ID  - TM_2021_315_a3
ER  - 
%0 Journal Article
%A S. M. Aseev
%T Refined Euler–Lagrange Inclusion for an Optimal Control Problem with Discontinuous Integrand
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 34-63
%V 315
%U http://geodesic.mathdoc.fr/item/TM_2021_315_a3/
%G ru
%F TM_2021_315_a3
S. M. Aseev. Refined Euler–Lagrange Inclusion for an Optimal Control Problem with Discontinuous Integrand. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 34-63. http://geodesic.mathdoc.fr/item/TM_2021_315_a3/

[1] A. V. Arutyunov, “Perturbations of extremal problems with constraints and necessary optimality conditions”, J. Sov. Math., 54:6 (1991), 1342–1400 | DOI

[2] A. V. Arutyunov, Optimality Conditions. Abnormal and Degenerate Problems, Kluwer, Dordrecht, 2000

[3] Arutyunov A.V., Aseev S.M., “Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints”, SIAM J. Control Optim., 35:3 (1997), 930–952 | DOI | MR

[4] Arutyunov A.V., Karamzin D.Yu., Pereira F.L., “The maximum principle for optimal control problems with state constraints by R. V. Gamkrelidze: Revisited”, J. Optim. Theory Appl., 149:3 (2011), 474–493 | DOI | MR

[5] Aseev S.M., “Methods of regularization in nonsmooth problems of dynamic optimization”, J. Math. Sci., 94:3 (1999), 1366–1393 | DOI | MR

[6] S. M. Aseev, “Extremal problems for differential inclusions with state constraints”, Proc. Steklov Inst. Math., 233 (2001), 1–63

[7] S. M. Aseev, “Optimization of dynamics of a control system in the presence of risk factors”, Tr. Inst. Mat. Mekh. (Ekaterinburg), 23:1 (2017), 27–42 | MR

[8] S. M. Aseev, “On an optimal control problem with discontinuous integrand”, Proc. Steklov Inst. Math., 304:Suppl. 1 (2019), S3–S13 | DOI | MR

[9] Aseev S.M., “An optimal control problem with a risk zone”, Large-scale scientific computing: 11th Int. Conf., LSSC 2017 (Sozopol, 2017), Lect. Notes Comput. Sci., 10665, Springer, Cham, 2018, 185–192 | DOI

[10] Aseev S.M., “A problem of dynamic optimization in the presence of dangerous factors”, Stability, control and differential games: Proc. Int. Conf. SCDG2019 (Yekaterinburg, 2019), Lect. Notes Control Inf. Sci. – Proc., Springer, Cham, 2020, 273–281

[11] S. M. Aseev and A. I. Smirnov, “The Pontryagin maximum principle for the problem of optimally crossing a given domain”, Dokl. Math., 69:2 (2004), 243–245 | MR

[12] S. M. Aseev and A. I. Smirnov, “Necessary first-order conditions for optimal crossing of a given region”, Comput. Math. Model., 18:4 (2007), 397–419 | DOI | MR

[13] Cesari L., Optimization—theory and applications: Problems with ordinary differential equations, Springer, New York, 1983

[14] Clarke F.H., “The Euler–Lagrange differential inclusion”, J. Diff. Eqns., 19 (1975), 80–90 | DOI

[15] F. H. Clarke, Optimization and Nonsmooth Analysis, J. Wiley Sons, New York, 1983

[16] Clarke F., Functional analysis, calculus of variations and optimal control, Grad. Texts Math., 264, Springer, London, 2013 | DOI

[17] Ferreira M.M.A., Vinter R.B., “When is the maximum principle for state constrained problems nondegenerate?”, J. Math. Anal. Appl., 187:2 (1994), 438–467 | DOI | MR

[18] Fontes F.A.C.C., Frankowska H., “Normality and nondegeneracy for optimal control problems with state constraints”, J. Optim. Theory Appl., 166:1 (2015), 115–136 | DOI | MR

[19] A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, North-Holland, Amsterdam, 2009

[20] B. Sh. Mordukhovich, “Maximum principle in the problem of time optimal response with nonsmooth constraints”, J. Appl. Math. Mech., 40 (1976), 960–969 | DOI | MR

[21] Mordukhovich B.Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988

[22] B. Sh. Mordukhovich, “Optimal control of difference, differential, and differential–difference inclusions”, J. Math. Sci., 100:6 (2000), 2613–2632 | DOI | MR

[23] I. P. Natanson, Theory of Functions of a Real Variable, Dover Publ., Mineola, NY, 2016

[24] E. S. Polovinkin and G. V. Smirnov, “Time-optimal problem for differential inclusions”, Diff. Eqns., 22:8 (1986), 940–952 | MR

[25] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964

[26] Pshenichnyi B.N., Ochilov S., “O zadache optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Kibernetika i vychisl. tekhnika, 99 (1993), 3–8

[27] Pshenichnyi B.N., Ochilov S., “Ob odnoi spetsialnoi zadache optimalnogo bystrodeistviya”, Kibernetika i vychisl. tekhnika, 101 (1994), 11–15

[28] Schneider R., “Equivariant endomorphisms of the space of convex bodies”, Trans. Amer. Math. Soc, 194 (1974), 53–78 | DOI | MR

[29] A. I. Smirnov, “Necessary optimality conditions for a class of optimal control problems with discontinuous integrand”, Proc. Steklov Inst. Math., 262 (2008), 213–230 | DOI | MR

[30] Smirnov G.V., Introduction to the theory of differential inclusions, Grad. Stud. Math., 41, Amer. Math. Soc., Providence, RI, 2002

[31] Vinter R., Optimal control, Birkhäuser, Boston, 2000