Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_315_a3, author = {S. M. Aseev}, title = {Refined {Euler--Lagrange} {Inclusion} for an {Optimal} {Control} {Problem} with {Discontinuous} {Integrand}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {34--63}, publisher = {mathdoc}, volume = {315}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a3/} }
TY - JOUR AU - S. M. Aseev TI - Refined Euler--Lagrange Inclusion for an Optimal Control Problem with Discontinuous Integrand JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 34 EP - 63 VL - 315 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_315_a3/ LA - ru ID - TM_2021_315_a3 ER -
S. M. Aseev. Refined Euler--Lagrange Inclusion for an Optimal Control Problem with Discontinuous Integrand. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 34-63. http://geodesic.mathdoc.fr/item/TM_2021_315_a3/
[1] A. V. Arutyunov, “Perturbations of extremal problems with constraints and necessary optimality conditions”, J. Sov. Math., 54:6 (1991), 1342–1400 | DOI
[2] A. V. Arutyunov, Optimality Conditions. Abnormal and Degenerate Problems, Kluwer, Dordrecht, 2000
[3] Arutyunov A.V., Aseev S.M., “Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints”, SIAM J. Control Optim., 35:3 (1997), 930–952 | DOI | MR
[4] Arutyunov A.V., Karamzin D.Yu., Pereira F.L., “The maximum principle for optimal control problems with state constraints by R. V. Gamkrelidze: Revisited”, J. Optim. Theory Appl., 149:3 (2011), 474–493 | DOI | MR
[5] Aseev S.M., “Methods of regularization in nonsmooth problems of dynamic optimization”, J. Math. Sci., 94:3 (1999), 1366–1393 | DOI | MR
[6] S. M. Aseev, “Extremal problems for differential inclusions with state constraints”, Proc. Steklov Inst. Math., 233 (2001), 1–63
[7] S. M. Aseev, “Optimization of dynamics of a control system in the presence of risk factors”, Tr. Inst. Mat. Mekh. (Ekaterinburg), 23:1 (2017), 27–42 | MR
[8] S. M. Aseev, “On an optimal control problem with discontinuous integrand”, Proc. Steklov Inst. Math., 304:Suppl. 1 (2019), S3–S13 | DOI | MR
[9] Aseev S.M., “An optimal control problem with a risk zone”, Large-scale scientific computing: 11th Int. Conf., LSSC 2017 (Sozopol, 2017), Lect. Notes Comput. Sci., 10665, Springer, Cham, 2018, 185–192 | DOI
[10] Aseev S.M., “A problem of dynamic optimization in the presence of dangerous factors”, Stability, control and differential games: Proc. Int. Conf. SCDG2019 (Yekaterinburg, 2019), Lect. Notes Control Inf. Sci. – Proc., Springer, Cham, 2020, 273–281
[11] S. M. Aseev and A. I. Smirnov, “The Pontryagin maximum principle for the problem of optimally crossing a given domain”, Dokl. Math., 69:2 (2004), 243–245 | MR
[12] S. M. Aseev and A. I. Smirnov, “Necessary first-order conditions for optimal crossing of a given region”, Comput. Math. Model., 18:4 (2007), 397–419 | DOI | MR
[13] Cesari L., Optimization—theory and applications: Problems with ordinary differential equations, Springer, New York, 1983
[14] Clarke F.H., “The Euler–Lagrange differential inclusion”, J. Diff. Eqns., 19 (1975), 80–90 | DOI
[15] F. H. Clarke, Optimization and Nonsmooth Analysis, J. Wiley Sons, New York, 1983
[16] Clarke F., Functional analysis, calculus of variations and optimal control, Grad. Texts Math., 264, Springer, London, 2013 | DOI
[17] Ferreira M.M.A., Vinter R.B., “When is the maximum principle for state constrained problems nondegenerate?”, J. Math. Anal. Appl., 187:2 (1994), 438–467 | DOI | MR
[18] Fontes F.A.C.C., Frankowska H., “Normality and nondegeneracy for optimal control problems with state constraints”, J. Optim. Theory Appl., 166:1 (2015), 115–136 | DOI | MR
[19] A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, North-Holland, Amsterdam, 2009
[20] B. Sh. Mordukhovich, “Maximum principle in the problem of time optimal response with nonsmooth constraints”, J. Appl. Math. Mech., 40 (1976), 960–969 | DOI | MR
[21] Mordukhovich B.Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988
[22] B. Sh. Mordukhovich, “Optimal control of difference, differential, and differential–difference inclusions”, J. Math. Sci., 100:6 (2000), 2613–2632 | DOI | MR
[23] I. P. Natanson, Theory of Functions of a Real Variable, Dover Publ., Mineola, NY, 2016
[24] E. S. Polovinkin and G. V. Smirnov, “Time-optimal problem for differential inclusions”, Diff. Eqns., 22:8 (1986), 940–952 | MR
[25] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964
[26] Pshenichnyi B.N., Ochilov S., “O zadache optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Kibernetika i vychisl. tekhnika, 99 (1993), 3–8
[27] Pshenichnyi B.N., Ochilov S., “Ob odnoi spetsialnoi zadache optimalnogo bystrodeistviya”, Kibernetika i vychisl. tekhnika, 101 (1994), 11–15
[28] Schneider R., “Equivariant endomorphisms of the space of convex bodies”, Trans. Amer. Math. Soc, 194 (1974), 53–78 | DOI | MR
[29] A. I. Smirnov, “Necessary optimality conditions for a class of optimal control problems with discontinuous integrand”, Proc. Steklov Inst. Math., 262 (2008), 213–230 | DOI | MR
[30] Smirnov G.V., Introduction to the theory of differential inclusions, Grad. Stud. Math., 41, Amer. Math. Soc., Providence, RI, 2002
[31] Vinter R., Optimal control, Birkhäuser, Boston, 2000