Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_315_a2, author = {A. V. Arutyunov and K. I. Salikhova}, title = {Implicit {Function} {Theorem} in a {Neighborhood} of an {Abnormal} {Point}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {26--33}, publisher = {mathdoc}, volume = {315}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a2/} }
TY - JOUR AU - A. V. Arutyunov AU - K. I. Salikhova TI - Implicit Function Theorem in a Neighborhood of an Abnormal Point JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 26 EP - 33 VL - 315 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_315_a2/ LA - ru ID - TM_2021_315_a2 ER -
A. V. Arutyunov; K. I. Salikhova. Implicit Function Theorem in a Neighborhood of an Abnormal Point. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 26-33. http://geodesic.mathdoc.fr/item/TM_2021_315_a2/
[1] V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control, Consultants Bureau, New York, 1987
[2] A. V. Arutyunov, “Smooth abnormal problems in extremum theory and analysis”, Russ. Math. Surv., 67:3 (2012), 403–457 | DOI | MR
[3] A. V. Arutyunov, “Existence of real solutions of nonlinear equations without a priori normality assumptions”, Math. Notes, 109:1–2 (2021), 3–14 | DOI | MR
[4] A. V. Arutyunov and S. E. Zhukovskiy, “Existence and properties of inverse mappings”, Proc. Steklov Inst. Math., 271 (2010), 12–22 | DOI | MR
[5] Bartle R.G., Graves L.M., “Mappings between function spaces”, Trans. Amer. Math. Soc., 72 (1952), 400–413 | DOI | MR
[6] Dontchev A.L., Rockafellar R.T., Implicit functions and solution mappings: A view from variational analysis, 2nd ed., Springer, New York, 2014