Implicit Function Theorem in a Neighborhood of an Abnormal Point
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 26-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence of an implicit function, defined by an equation $G(x,\sigma )=0$, in a neighborhood of an abnormal point $(x_0,\sigma _0)$. We prove that if some $\lambda $-truncation of the mapping $F(x) = G(x,\sigma _0)$ is regular in a certain direction, then the sought implicit function exists.
@article{TM_2021_315_a2,
     author = {A. V. Arutyunov and K. I. Salikhova},
     title = {Implicit {Function} {Theorem} in a {Neighborhood} of an {Abnormal} {Point}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {26--33},
     publisher = {mathdoc},
     volume = {315},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a2/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - K. I. Salikhova
TI  - Implicit Function Theorem in a Neighborhood of an Abnormal Point
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 26
EP  - 33
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_315_a2/
LA  - ru
ID  - TM_2021_315_a2
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A K. I. Salikhova
%T Implicit Function Theorem in a Neighborhood of an Abnormal Point
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 26-33
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_315_a2/
%G ru
%F TM_2021_315_a2
A. V. Arutyunov; K. I. Salikhova. Implicit Function Theorem in a Neighborhood of an Abnormal Point. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 26-33. http://geodesic.mathdoc.fr/item/TM_2021_315_a2/

[1] V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control, Consultants Bureau, New York, 1987

[2] A. V. Arutyunov, “Smooth abnormal problems in extremum theory and analysis”, Russ. Math. Surv., 67:3 (2012), 403–457 | DOI | MR

[3] A. V. Arutyunov, “Existence of real solutions of nonlinear equations without a priori normality assumptions”, Math. Notes, 109:1–2 (2021), 3–14 | DOI | MR

[4] A. V. Arutyunov and S. E. Zhukovskiy, “Existence and properties of inverse mappings”, Proc. Steklov Inst. Math., 271 (2010), 12–22 | DOI | MR

[5] Bartle R.G., Graves L.M., “Mappings between function spaces”, Trans. Amer. Math. Soc., 72 (1952), 400–413 | DOI | MR

[6] Dontchev A.L., Rockafellar R.T., Implicit functions and solution mappings: A view from variational analysis, 2nd ed., Springer, New York, 2014