Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_315_a17, author = {N. N. Subbotina and E. A. Krupennikov}, title = {Weak* {Solution} to a {Dynamic} {Reconstruction} {Problem}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {247--260}, publisher = {mathdoc}, volume = {315}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a17/} }
TY - JOUR AU - N. N. Subbotina AU - E. A. Krupennikov TI - Weak* Solution to a Dynamic Reconstruction Problem JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 247 EP - 260 VL - 315 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_315_a17/ LA - ru ID - TM_2021_315_a17 ER -
N. N. Subbotina; E. A. Krupennikov. Weak* Solution to a Dynamic Reconstruction Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 247-260. http://geodesic.mathdoc.fr/item/TM_2021_315_a17/
[1] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997
[2] R. V. Gamkrelidze, Principles of Optimal Control Theory, Plenum Press, New York, 1978
[3] A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, North-Holland, Amsterdam, 2009
[4] Kabanikhin S.I., Krivorotko O.I., “Identification of biological models described by systems of nonlinear differential equations”, J. Inverse Ill-Posed Probl., 23:5 (2015), 519–527 | MR
[5] N. N. Krasovskii and A. I. Subbotin, Game-Theoretical Control Problems, Springer, New York, 1988
[6] A. V. Kryazhimskii and Yu. S. Osipov, “Modelling of a control in a dynamic system”, Eng. Cybern., 21:2 (1984), 38–47
[7] Liu Y.-C., Chen Y.-W., Wang Y.-T., Chang J.-R., “A high-order Lie groups scheme for solving the recovery of external force in nonlinear system”, Inverse Probl. Sci. Eng., 26:12 (2018), 1749–1783 | DOI | MR
[8] J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics, Wiley, Chichester, 1999
[9] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: Dynamical solutions, Gordon and Breach, Amsterdam, 1995
[10] Yu. S. Osipov, A. V. Kryazhimskii, and V. I. Maksimov, “Some algorithms for the dynamic reconstruction of inputs”, Proc. Steklov Inst. Math., 275:Suppl. 1 (2011), S86–S120
[11] Osipov Yu.S., Vasilev F.P., Potapov M.M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo Mosk. un-ta, M., 1999
[12] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964
[13] Sabatier P.C., “Past and future of inverse problems”, J. Math. Phys., 41:6 (2000), 4082–4124 | DOI | MR
[14] Schmitt U., Louis A.K., Wolters C., Vauhkonen M., “Efficient algorithms for the regularization of dynamic inverse problems. II: Applications”, Inverse Probl., 18:3 (2002), 659–676 | DOI
[15] Schuster T., Hahn B., Burger M., “Dynamic inverse problems: modelling—regularization—numerics”, Inverse Probl., 34:4 (2018), 040301 | DOI
[16] Subbotina N.N., “Calculus of variations in solutions of dynamic reconstruction problems”, Stability, control and differential games, Proc. Int. Conf. SCDG2019 (Yekaterinburg, 2019), Lect. Notes Control Inf. Sci. – Proc., Springer, Cham, 2020, 367–377
[17] N. N. Subbotina and E. A. Krupennikov, “The method of characteristics in an identification problem”, Proc. Steklov Inst. Math., 299:Suppl. 1 (2017), S205–S216
[18] Subbotina N.N., Krupennikov E.A., “Hamiltonian systems for control reconstruction problems”, Minimax Theory Appl., 5:2 (2020), 439–454 | MR
[19] Subbotina N.N., Krupennikov E.A., “Slabye so zvezdoi approksimatsii resheniya zadachi dinamicheskoi rekonstruktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:2 (2021), 208–220 | MR
[20] Subbotina N.N., Tokmantsev T.B., Krupennikov E.A., “Dynamic programming to reconstruction problems for a macroeconomic model”, System modeling and optimization, Proc. Conf. CSMO 2015, IFIP Adv. Inf. Commun. Technol., 494, Cham, Springer, 2016, 472–481 | DOI
[21] A. N. Tikhonov, “On the stability of inverse problems”, C. R. (Dokl.) Acad. Sci. URSS, 39 (1943), 176–179
[22] Vasin V.V., “Methods for solving nonlinear ill-posed problems based on the Tikhonov–Lavrentiev regularization and iterative approximation”, Eurasian J. Math. Comput. Appl., 4:4 (2016), 60–73 | MR
[23] J. Warga, Optimal Control of Differential and Functional Equations, Academic, New York, 1972