Weak* Solution to a Dynamic Reconstruction Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 247-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a dynamic control reconstruction problem for deterministic affine control systems. The reconstruction is performed in real time on the basis of known discrete inaccurate measurements of the observed trajectory of the system generated by an unknown measurable control with values in a given compact set. We formulate a well-posed reconstruction problem in the weak* sense and propose its solution obtained by the variational method developed by the authors. This approach uses auxiliary variational problems with a convex–concave Lagrangian regularized by Tikhonov's method. Then the solution of the reconstruction problem reduces to the integration of Hamiltonian systems of ordinary differential equations. We present matching conditions for the approximation parameters (accuracy parameters, the frequency of measurements of the trajectory, and an auxiliary regularizing parameter) and show that under these conditions the reconstructed controls are bounded and the trajectories of the dynamical system generated by these controls converge uniformly to the observed trajectory.
Keywords: dynamic reconstruction problems, variational problems, convex–concave Lagrangian, Hamiltonian systems.
@article{TM_2021_315_a17,
     author = {N. N. Subbotina and E. A. Krupennikov},
     title = {Weak* {Solution} to a {Dynamic} {Reconstruction} {Problem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {247--260},
     publisher = {mathdoc},
     volume = {315},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a17/}
}
TY  - JOUR
AU  - N. N. Subbotina
AU  - E. A. Krupennikov
TI  - Weak* Solution to a Dynamic Reconstruction Problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 247
EP  - 260
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_315_a17/
LA  - ru
ID  - TM_2021_315_a17
ER  - 
%0 Journal Article
%A N. N. Subbotina
%A E. A. Krupennikov
%T Weak* Solution to a Dynamic Reconstruction Problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 247-260
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_315_a17/
%G ru
%F TM_2021_315_a17
N. N. Subbotina; E. A. Krupennikov. Weak* Solution to a Dynamic Reconstruction Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 247-260. http://geodesic.mathdoc.fr/item/TM_2021_315_a17/

[1] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997

[2] R. V. Gamkrelidze, Principles of Optimal Control Theory, Plenum Press, New York, 1978

[3] A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, North-Holland, Amsterdam, 2009

[4] Kabanikhin S.I., Krivorotko O.I., “Identification of biological models described by systems of nonlinear differential equations”, J. Inverse Ill-Posed Probl., 23:5 (2015), 519–527 | MR

[5] N. N. Krasovskii and A. I. Subbotin, Game-Theoretical Control Problems, Springer, New York, 1988

[6] A. V. Kryazhimskii and Yu. S. Osipov, “Modelling of a control in a dynamic system”, Eng. Cybern., 21:2 (1984), 38–47

[7] Liu Y.-C., Chen Y.-W., Wang Y.-T., Chang J.-R., “A high-order Lie groups scheme for solving the recovery of external force in nonlinear system”, Inverse Probl. Sci. Eng., 26:12 (2018), 1749–1783 | DOI | MR

[8] J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics, Wiley, Chichester, 1999

[9] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: Dynamical solutions, Gordon and Breach, Amsterdam, 1995

[10] Yu. S. Osipov, A. V. Kryazhimskii, and V. I. Maksimov, “Some algorithms for the dynamic reconstruction of inputs”, Proc. Steklov Inst. Math., 275:Suppl. 1 (2011), S86–S120

[11] Osipov Yu.S., Vasilev F.P., Potapov M.M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo Mosk. un-ta, M., 1999

[12] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964

[13] Sabatier P.C., “Past and future of inverse problems”, J. Math. Phys., 41:6 (2000), 4082–4124 | DOI | MR

[14] Schmitt U., Louis A.K., Wolters C., Vauhkonen M., “Efficient algorithms for the regularization of dynamic inverse problems. II: Applications”, Inverse Probl., 18:3 (2002), 659–676 | DOI

[15] Schuster T., Hahn B., Burger M., “Dynamic inverse problems: modelling—regularization—numerics”, Inverse Probl., 34:4 (2018), 040301 | DOI

[16] Subbotina N.N., “Calculus of variations in solutions of dynamic reconstruction problems”, Stability, control and differential games, Proc. Int. Conf. SCDG2019 (Yekaterinburg, 2019), Lect. Notes Control Inf. Sci. – Proc., Springer, Cham, 2020, 367–377

[17] N. N. Subbotina and E. A. Krupennikov, “The method of characteristics in an identification problem”, Proc. Steklov Inst. Math., 299:Suppl. 1 (2017), S205–S216

[18] Subbotina N.N., Krupennikov E.A., “Hamiltonian systems for control reconstruction problems”, Minimax Theory Appl., 5:2 (2020), 439–454 | MR

[19] Subbotina N.N., Krupennikov E.A., “Slabye so zvezdoi approksimatsii resheniya zadachi dinamicheskoi rekonstruktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:2 (2021), 208–220 | MR

[20] Subbotina N.N., Tokmantsev T.B., Krupennikov E.A., “Dynamic programming to reconstruction problems for a macroeconomic model”, System modeling and optimization, Proc. Conf. CSMO 2015, IFIP Adv. Inf. Commun. Technol., 494, Cham, Springer, 2016, 472–481 | DOI

[21] A. N. Tikhonov, “On the stability of inverse problems”, C. R. (Dokl.) Acad. Sci. URSS, 39 (1943), 176–179

[22] Vasin V.V., “Methods for solving nonlinear ill-posed problems based on the Tikhonov–Lavrentiev regularization and iterative approximation”, Eurasian J. Math. Comput. Appl., 4:4 (2016), 60–73 | MR

[23] J. Warga, Optimal Control of Differential and Functional Equations, Academic, New York, 1972