Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_315_a13, author = {A. V. Podobryaev}, title = {Construction of {Maxwell} {Points} in {Left-Invariant} {Optimal} {Control} {Problems}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {202--210}, publisher = {mathdoc}, volume = {315}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a13/} }
TY - JOUR AU - A. V. Podobryaev TI - Construction of Maxwell Points in Left-Invariant Optimal Control Problems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 202 EP - 210 VL - 315 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_315_a13/ LA - ru ID - TM_2021_315_a13 ER -
A. V. Podobryaev. Construction of Maxwell Points in Left-Invariant Optimal Control Problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 202-210. http://geodesic.mathdoc.fr/item/TM_2021_315_a13/
[1] Agrachev A., Barilari D., Boscain U., A comprehensive introduction to sub-Riemannian geometry: From the Hamiltonian viewpoint, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020
[2] A. A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint, Encycl. Math. Sci., 87, Springer, Berlin, 2004
[3] A. A. Ardentov, “Multiple solutions in Euler's elastic problem”, Autom. Remote Control, 79:7 (2018), 1191–1206 | DOI | MR
[4] V. I. Arnol'd and A. B. Givental', “Symplectic geometry”, Dynamical Systems IV: Symplectic Geometry and Its Applications, Encycl. Math. Sci., 4, Springer, Berlin, 1990, 1–138
[5] Marsden J.E., Montgomery R., Ratiu T., Reduction, symmetry, and phases in mechanics, Mem. AMS, 88, N 436, Amer. Math. Soc., Providence, RI, 1990
[6] Marsden J.E., Ratiu T.S., Introduction to mechanics and symmetry: A basic exposition of classical mechanical systems, Springer, New York, 1999
[7] Podobryaev A.V., “Symmetric extremal trajectories in left-invariant optimal control problems”, Russ. J. Nonlinear Dyn., 15:4 (2019), 569–575 | MR
[8] A. V. Podobryaev, “Symmetries in left-invariant optimal control problems”, Sb. Math., 211:2 (2020), 275–290 | DOI | MR
[9] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964
[10] Rizzi L., Serres U., “On the cut locus of free, step two Carnot groups”, Proc. Amer. Math. Soc., 145:12 (2017), 5341–5357 | DOI | MR
[11] Yu. L. Sachkov, “Discrete symmetries in the generalized Dido problem”, Sb. Math., 197:2 (2006), 235–257 | DOI | MR
[12] Yu. L. Sachkov, “The Maxwell set in the generalized Dido problem”, Sb. Math., 197:4 (2006), 595–621 | DOI | MR
[13] Yu. L. Sachkov, “Complete description of the Maxwell strata in the generalized Dido problem”, Sb. Math., 197:6 (2006), 901–950 | DOI | MR