Construction of Maxwell Points in Left-Invariant Optimal Control Problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 202-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider left-invariant optimal control problems on connected Lie groups. The Pontryagin maximum principle gives necessary optimality conditions. Namely, the extremal trajectories are the projections of trajectories of the corresponding Hamiltonian system on the cotangent bundle of the Lie group. The Maxwell points (i.e., the points where two different extremal trajectories meet each other) play a key role in the study of optimality of extremal trajectories. The reason is that an extremal trajectory cannot be optimal after a Maxwell point. We introduce a general construction for Maxwell points depending on the algebraic structure of the Lie group.
Keywords: Symmetry, Maxwell points, cut locus, geometric control theory, Riemannian geometry, sub-Riemannian geometry.
@article{TM_2021_315_a13,
     author = {A. V. Podobryaev},
     title = {Construction of {Maxwell} {Points} in {Left-Invariant} {Optimal} {Control} {Problems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {202--210},
     publisher = {mathdoc},
     volume = {315},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a13/}
}
TY  - JOUR
AU  - A. V. Podobryaev
TI  - Construction of Maxwell Points in Left-Invariant Optimal Control Problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 202
EP  - 210
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_315_a13/
LA  - ru
ID  - TM_2021_315_a13
ER  - 
%0 Journal Article
%A A. V. Podobryaev
%T Construction of Maxwell Points in Left-Invariant Optimal Control Problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 202-210
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_315_a13/
%G ru
%F TM_2021_315_a13
A. V. Podobryaev. Construction of Maxwell Points in Left-Invariant Optimal Control Problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 202-210. http://geodesic.mathdoc.fr/item/TM_2021_315_a13/

[1] Agrachev A., Barilari D., Boscain U., A comprehensive introduction to sub-Riemannian geometry: From the Hamiltonian viewpoint, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020

[2] A. A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint, Encycl. Math. Sci., 87, Springer, Berlin, 2004

[3] A. A. Ardentov, “Multiple solutions in Euler's elastic problem”, Autom. Remote Control, 79:7 (2018), 1191–1206 | DOI | MR

[4] V. I. Arnol'd and A. B. Givental', “Symplectic geometry”, Dynamical Systems IV: Symplectic Geometry and Its Applications, Encycl. Math. Sci., 4, Springer, Berlin, 1990, 1–138

[5] Marsden J.E., Montgomery R., Ratiu T., Reduction, symmetry, and phases in mechanics, Mem. AMS, 88, N 436, Amer. Math. Soc., Providence, RI, 1990

[6] Marsden J.E., Ratiu T.S., Introduction to mechanics and symmetry: A basic exposition of classical mechanical systems, Springer, New York, 1999

[7] Podobryaev A.V., “Symmetric extremal trajectories in left-invariant optimal control problems”, Russ. J. Nonlinear Dyn., 15:4 (2019), 569–575 | MR

[8] A. V. Podobryaev, “Symmetries in left-invariant optimal control problems”, Sb. Math., 211:2 (2020), 275–290 | DOI | MR

[9] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964

[10] Rizzi L., Serres U., “On the cut locus of free, step two Carnot groups”, Proc. Amer. Math. Soc., 145:12 (2017), 5341–5357 | DOI | MR

[11] Yu. L. Sachkov, “Discrete symmetries in the generalized Dido problem”, Sb. Math., 197:2 (2006), 235–257 | DOI | MR

[12] Yu. L. Sachkov, “The Maxwell set in the generalized Dido problem”, Sb. Math., 197:4 (2006), 595–621 | DOI | MR

[13] Yu. L. Sachkov, “Complete description of the Maxwell strata in the generalized Dido problem”, Sb. Math., 197:6 (2006), 901–950 | DOI | MR