Limit Passage in the Construction of a Geometric Solution: The Case of a Rarefaction Wave
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 182-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for constructing a geometric solution of the Riemann problem is described for a scalar conservation law perturbed by a rarefaction wave. The phase flow of the associated autonomous system is described topologically, and an explicit formula for the Hausdorff limit defining a geometric solution is presented.
@article{TM_2021_315_a12,
     author = {V. V. Palin},
     title = {Limit {Passage} in the {Construction} of a {Geometric} {Solution:} {The} {Case} of a {Rarefaction} {Wave}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {182--201},
     publisher = {mathdoc},
     volume = {315},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a12/}
}
TY  - JOUR
AU  - V. V. Palin
TI  - Limit Passage in the Construction of a Geometric Solution: The Case of a Rarefaction Wave
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 182
EP  - 201
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_315_a12/
LA  - ru
ID  - TM_2021_315_a12
ER  - 
%0 Journal Article
%A V. V. Palin
%T Limit Passage in the Construction of a Geometric Solution: The Case of a Rarefaction Wave
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 182-201
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_315_a12/
%G ru
%F TM_2021_315_a12
V. V. Palin. Limit Passage in the Construction of a Geometric Solution: The Case of a Rarefaction Wave. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 182-201. http://geodesic.mathdoc.fr/item/TM_2021_315_a12/

[1] Burago D., Burago Yu., Ivanov S., A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001 | DOI

[2] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer, Dordrecht, 1988

[3] P. D. Lax, Hyperbolic Partial Differential Equations, Courant Lect. Notes Math., 14, Am. Math. Soc., Providence, RI, 2006 | DOI

[4] Palin V.V., “Konstruktsiya geometricheskogo resheniya v sluchae volny razrezheniya”, Zap. nauchn. sem. POMI, 489, 2020, 55–66 | MR

[5] V. V. Palin, “On the passage to the limit in the construction of geometric solutions of the Riemann problem”, Math. Notes, 108:3–4 (2020), 356–369 | DOI | MR