Reconstruction of an Unbounded Input of a System of Differential Equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 160-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of reconstructing an unbounded nonsmooth input of a system of ordinary differential equations that are nonlinear in the state variables and linear in control. The problem has two features. First, we assume that the state coordinates of the system are measured (with error) at discrete instants of time. Second, we assume that the unknown input is an element of the space of functions with square integrable Euclidean norm, i.e., it may be nonsmooth and unbounded. Taking into account this feature of the problem, we construct an algorithm for solving it that is stable to information noise and computational errors. The algorithm is based on a combination of constructions of the theory of ill-posed problems and the well-known extremal shift method from the theory of positional differential games.
Keywords: system of differential equations
Mots-clés : stable reconstruction.
@article{TM_2021_315_a10,
     author = {V. I. Maksimov},
     title = {Reconstruction of an {Unbounded} {Input} of a {System} of {Differential} {Equations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {160--171},
     publisher = {mathdoc},
     volume = {315},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a10/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - Reconstruction of an Unbounded Input of a System of Differential Equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 160
EP  - 171
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_315_a10/
LA  - ru
ID  - TM_2021_315_a10
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T Reconstruction of an Unbounded Input of a System of Differential Equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 160-171
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_315_a10/
%G ru
%F TM_2021_315_a10
V. I. Maksimov. Reconstruction of an Unbounded Input of a System of Differential Equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 160-171. http://geodesic.mathdoc.fr/item/TM_2021_315_a10/

[1] Blizorukova M.S., Maksimov V.I., “Ob odnom algoritme dinamicheskogo vosstanovleniya vkhodnogo vozdeistviya”, Dif. uravneniya, 49:1 (2013), 88–100 | MR

[2] V. K. Ivanov, V. V. Vasin, and V. P. Tanana, Theory of Linear Ill-Posed Problems and Its Applications, VSP, Utrecht, 2002

[3] F. Kappel, A. V. Kryazhimskii, and V. I. Maksimov, “Dynamic reconstruction of states and guaranteeing control of a reaction–diffusion system”, Dokl. Math., 61:1 (2000), 143–145 | MR

[4] N. N. Krasovskii and A. I. Subbotin, Game-Theoretical Control Problems, Springer, New York, 1988

[5] V. I. Maksimov, “Reconstruction of controls in exponentially stable linear systems subjected to small perturbations”, J. Appl. Math. Mech., 71:6 (2007), 851–861 | DOI | MR

[6] V. I. Maksimov, “On one algorithm of input action reconstruction for linear systems”, J. Comput. Syst. Sci. Int., 48:5 (2009), 681–690 | DOI | MR

[7] Maksimov V.I., “On dynamical reconstruction of an input in a linear system under measuring a part of coordinates”, J. Inverse Ill-Posed Probl., 26:3 (2018), 395–410 | DOI | MR

[8] V. I. Maksimov, “Input reconstruction in a dynamic system from measurements of a part of phase coordinates”, Comput. Math. Math. Phys., 59:5 (2019), 708–717 | DOI | MR

[9] V. I. Maksimov and L. Pandolfi, “The reconstruction of unbounded controls in nonlinear dynamical systems”, J. Appl. Math. Mech., 65:3 (2001), 371–376 | DOI | MR | MR

[10] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: Dynamical solutions, Gordon and Breach, Amsterdam, 1995

[11] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, UrO RAN, Ekaterinburg, 2011

[12] Osipov Yu.S., Vasilev F.P., Potapov M.M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo Mosk. un-ta, M., 1999

[13] A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems, J. Wiley Sons, New York, 1977