Modular Ternary Additive Problems with Irregular or Prime Numbers
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 211-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

Our initial problem is to represent classes $m$ modulo $q$ by a sum of three summands, two being taken from rather small sets $\mathcal{A}$ and $\mathcal{B}$ and the third one having an odd number of prime factors (the so-called irregular numbers by S. Ramanujan) and lying in a $[q^{20r}, q^{20r}+q^{16r}]$ for some given $r\ge1$. We show that it is always possible to do so provided that $|\mathcal{A}||\mathcal{B}|\ge q(\log q)^2$. This proof leads us to study the trigonometric polynomial over irregular numbers in a short interval and to seek very sharp bound for them. We prove in particular that $\sum_{q^{20r}\le s \le q^{20r}+q^{16r}}e(sa/q)\ll q^{16r}(\log q)/\sqrt{\varphi(q)}$ uniformly in $r$, where $s$ ranges through the irregular numbers. We develop a technique initiated by Selberg and Motohashi to do so. In short, we express the characteristic function of the irregular numbers via a family of bilinear decomposition akin to Iwaniec amplification process and that uses pseudo-characters or local models. The technique applies to the Liouville function, to the Moebius function and also to the van Mangold function in which case it is slightly more difficult. It is however simple enough to warrant explicit estimates and we prove for instance that $| \sum_{X\ell\le 2X}\Lambda(\ell)\, e(\ell a/q) |\le 1300 \sqrt{q}\,X/\varphi(q)$ for $250\le q\le X^{1/24}$ and any $a$ prime to $q$. Several other results are also proved.
@article{TM_2021_314_a9,
     author = {Olivier Ramar\'e and G. K. Viswanadham},
     title = {Modular {Ternary} {Additive} {Problems} with {Irregular} or {Prime} {Numbers}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {211--247},
     publisher = {mathdoc},
     volume = {314},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a9/}
}
TY  - JOUR
AU  - Olivier Ramaré
AU  - G. K. Viswanadham
TI  - Modular Ternary Additive Problems with Irregular or Prime Numbers
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 211
EP  - 247
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_314_a9/
LA  - ru
ID  - TM_2021_314_a9
ER  - 
%0 Journal Article
%A Olivier Ramaré
%A G. K. Viswanadham
%T Modular Ternary Additive Problems with Irregular or Prime Numbers
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 211-247
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_314_a9/
%G ru
%F TM_2021_314_a9
Olivier Ramaré; G. K. Viswanadham. Modular Ternary Additive Problems with Irregular or Prime Numbers. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 211-247. http://geodesic.mathdoc.fr/item/TM_2021_314_a9/

[1] M. B. Barban and P. P. Vehov, “On an extremal problem”, Trans. Mosc. Math. Soc., 18 (1968), 91–99 | MR | Zbl | Zbl

[2] Bombieri E., Le grand crible dans la théorie analytique des nombres, Astérisque, 18, Soc. math. France, Paris, 1974 ; 2nd ed., 1987 | MR

[3] Bourgain J., Sarnak P., Ziegler T., “Disjointness of Moebius from horocycle flows”, From Fourier analysis and number theory to Radon transforms and geometry, Dev. Math., 28, Springer, Berlin, 2013, 67–83 ; arXiv: 1110.0992 [math.NT] | MR | Zbl

[4] Codecà P., Nair M., “A note on a result of Bateman and Chowla”, Acta arith., 93:2 (2000), 139–148 | DOI | MR | Zbl

[5] Daboussi H., “Brun's fundamental lemma and exponential sums over primes”, J. Number Theory, 90:1 (2001), 1–18 | DOI | MR | Zbl

[6] Davenport H., “On some infinite series involving arithmetical functions. II”, Q. J. Math. Oxf. Ser., 8 (1937), 313–320 | DOI

[7] Fouvry E., Iwaniec H., “Exponential sums with monomials”, J. Number Theory, 33:3 (1989), 311–333 | DOI | MR | Zbl

[8] Gallagher P.X., “A large sieve density estimate near $\sigma =1$”, Invent. math., 11 (1970), 329–339 | DOI | MR | Zbl

[9] Graham S., “An asymptotic estimate related to Selberg's sieve”, J. Number Theory, 10:1 (1978), 83–94 | DOI | MR | Zbl

[10] Green B., Tao T., “The Möbius function is strongly orthogonal to nilsequences”, Ann. Math. Ser. 2, 175:2 (2012), 541–566 | DOI | MR | Zbl

[11] Hajela D., Smith B., “On the maximum of an exponential sum of the Möbius function”, Number theory: Semin. New York, 1984–1985, Lect. Notes Math., 1240, Springer, Berlin, 1987, 145–164 | DOI | MR

[12] Haye Betah M., “Explicit expression of a Barban Vehov theorem”, Funct. approx. Comment. math., 60:2 (2019), 177–193 | MR | Zbl

[13] Iwaniec H., Kowalski E., Analytic number theory, AMS Colloq. Publ., 53, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[14] A. A. Karatsuba, Basic Analytic Number Theory, Springer, Berlin, 1993 | MR | MR | Zbl

[15] Van Lint J.H., Richert H.-E., “On primes in arithmetic progressions”, Acta arith., 11 (1965), 209–216 | DOI | MR | Zbl

[16] Montgomery H.L., Vaughan R.C., “The large sieve”, Mathematika, 20:2 (1973), 119–134 | DOI | MR | Zbl

[17] Motohashi Y., “On Gallagher's prime number theorem”, Proc. Japan Acad. Ser. A: Math. Sci., 53:2 (1977), 50–52 | DOI | MR | Zbl

[18] Motohashi Y., “Primes in arithmetic progressions”, Invent. math., 44:2 (1978), 163–178 | DOI | MR | Zbl

[19] Motohashi Y., Lectures on sieve methods and prime number theory, Lect. Math. Phys. Math., 72, Springer, Berlin, 1983 | MR | Zbl

[20] OEIS Foundation., The On-Line Encyclopedia of Integer Sequences, 2019 http://oeis.org

[21] Pintz J., “Elementary methods in the theory of $L$-functions. II: On the greatest real zero of a real $L$-function”, Acta arith., 31 (1976), 273–289 | DOI | MR | Zbl

[22] Platt D.J., “Numerical computations concerning the GRH”, Math. Comput., 85:302 (2016), 3009–3027 ; arXiv: 1305.3087 [math.NT] | DOI | MR | Zbl

[23] Platt D.J., Ramaré O., “Explicit estimates: from $\Lambda (n)$ in arithmetic progressions to $\Lambda (n)/n$”, Exp. Math., 26:1 (2017), 77–92 | DOI | MR | Zbl

[24] Ramachandra K., “Some problems of analytic number theory”, Acta arith., 31:4 (1976), 313–324 | DOI | MR | Zbl

[25] Ramanujan S., “Irregular numbers”, J. Indian Math. Soc., 5 (1913), 105–106 ; Collected papers of Srinivasa Ramanujan, Cambridge Univ. Press, Cambridge, 2015, 20–21 | Zbl

[26] Ramaré O., “On Šnirel'man's constant”, Ann. Sc. Norm. Pisa. Cl. Sci. Sér. 4, 22:4 (1995), 645–706 | MR | Zbl

[27] Ramaré O., “Eigenvalues in the large sieve inequality”, Funct. approx. Comment. math., 37:2 (2007), 399–427 | DOI | MR | Zbl

[28] Ramaré O., Arithmetical aspects of the large sieve inequality. With the collaboration of D.S. Ramana, Harish-Chandra Res. Inst. Lect. Notes, 1, Hindustan Book Agency, New Delhi, 2009 | MR | Zbl

[29] Ramaré O., “On Bombieri's asymptotic sieve”, J. Number Theory, 130:5 (2010), 1155–1189 | DOI | MR | Zbl

[30] Ramaré O., “Some elementary explicit bounds for two mollifications of the Moebius function”, Funct. approx. Comment. math., 49:2 (2013), 229–240 | DOI | MR | Zbl

[31] Ramaré O., “Explicit estimates on several summatory functions involving the Moebius function”, Math. Comput., 84:293 (2015), 1359–1387 | DOI | MR | Zbl

[32] Ramaré O., “An explicit density estimate for Dirichlet $L$-series”, Math. Comput., 85:297 (2016), 335–356 | MR

[33] Ramaré O., “Modified truncated Perron formulae”, Ann. Math. Blaise Pascal, 23:1 (2016), 109–128 | DOI | MR | Zbl

[34] Rankin R.A., “The difference between consecutive prime numbers”, J. London Math. Soc., 13 (1938), 242–247 | DOI | MR

[35] Riesel H., Vaughan R.C., “On sums of primes”, Ark. Mat., 21 (1983), 45–74 | DOI | MR | Zbl

[36] Rosser J.B., Schoenfeld L., “Approximate formulas for some functions of prime numbers”, Ill. J. Math., 6 (1962), 64–94 | MR | Zbl

[37] Selberg A., “On elementary methods in prime number theory and their limitations”, C. r. 11ème Congrès des mathematiciens Scandinaves, Trondheim, 1949, Johan Grundt Tanums Forlag, Oslo, 1952, 13–22 | MR

[38] I. M. Vinogradov, “Representation of an odd number as a sum of three primes”, Dokl. Akad. Nauk SSSR, 15:6–7 (1937), 291–294 | Zbl

[39] I. M. Vinogradov, The Method of Trigonometrical Sums in the Theory of Numbers, Dover Publ., Mineola, NY, 2004 | MR | MR | Zbl

[40] A. A. Karatsuba and S. M. Voronin, The Riemann Zeta-Function, W. de Gruyter, Berlin, 1992 | MR | MR | Zbl

[41] Zhan T., “On the representation of large odd integer as a sum of three almost equal primes”, Acta math. Sin. New Ser., 7:3 (1991), 259–272 | DOI | MR | Zbl