Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_314_a9, author = {Olivier Ramar\'e and G. K. Viswanadham}, title = {Modular {Ternary} {Additive} {Problems} with {Irregular} or {Prime} {Numbers}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {211--247}, publisher = {mathdoc}, volume = {314}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a9/} }
TY - JOUR AU - Olivier Ramaré AU - G. K. Viswanadham TI - Modular Ternary Additive Problems with Irregular or Prime Numbers JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 211 EP - 247 VL - 314 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_314_a9/ LA - ru ID - TM_2021_314_a9 ER -
Olivier Ramaré; G. K. Viswanadham. Modular Ternary Additive Problems with Irregular or Prime Numbers. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 211-247. http://geodesic.mathdoc.fr/item/TM_2021_314_a9/
[1] M. B. Barban and P. P. Vehov, “On an extremal problem”, Trans. Mosc. Math. Soc., 18 (1968), 91–99 | MR | Zbl | Zbl
[2] Bombieri E., Le grand crible dans la théorie analytique des nombres, Astérisque, 18, Soc. math. France, Paris, 1974 ; 2nd ed., 1987 | MR
[3] Bourgain J., Sarnak P., Ziegler T., “Disjointness of Moebius from horocycle flows”, From Fourier analysis and number theory to Radon transforms and geometry, Dev. Math., 28, Springer, Berlin, 2013, 67–83 ; arXiv: 1110.0992 [math.NT] | MR | Zbl
[4] Codecà P., Nair M., “A note on a result of Bateman and Chowla”, Acta arith., 93:2 (2000), 139–148 | DOI | MR | Zbl
[5] Daboussi H., “Brun's fundamental lemma and exponential sums over primes”, J. Number Theory, 90:1 (2001), 1–18 | DOI | MR | Zbl
[6] Davenport H., “On some infinite series involving arithmetical functions. II”, Q. J. Math. Oxf. Ser., 8 (1937), 313–320 | DOI
[7] Fouvry E., Iwaniec H., “Exponential sums with monomials”, J. Number Theory, 33:3 (1989), 311–333 | DOI | MR | Zbl
[8] Gallagher P.X., “A large sieve density estimate near $\sigma =1$”, Invent. math., 11 (1970), 329–339 | DOI | MR | Zbl
[9] Graham S., “An asymptotic estimate related to Selberg's sieve”, J. Number Theory, 10:1 (1978), 83–94 | DOI | MR | Zbl
[10] Green B., Tao T., “The Möbius function is strongly orthogonal to nilsequences”, Ann. Math. Ser. 2, 175:2 (2012), 541–566 | DOI | MR | Zbl
[11] Hajela D., Smith B., “On the maximum of an exponential sum of the Möbius function”, Number theory: Semin. New York, 1984–1985, Lect. Notes Math., 1240, Springer, Berlin, 1987, 145–164 | DOI | MR
[12] Haye Betah M., “Explicit expression of a Barban Vehov theorem”, Funct. approx. Comment. math., 60:2 (2019), 177–193 | MR | Zbl
[13] Iwaniec H., Kowalski E., Analytic number theory, AMS Colloq. Publ., 53, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl
[14] A. A. Karatsuba, Basic Analytic Number Theory, Springer, Berlin, 1993 | MR | MR | Zbl
[15] Van Lint J.H., Richert H.-E., “On primes in arithmetic progressions”, Acta arith., 11 (1965), 209–216 | DOI | MR | Zbl
[16] Montgomery H.L., Vaughan R.C., “The large sieve”, Mathematika, 20:2 (1973), 119–134 | DOI | MR | Zbl
[17] Motohashi Y., “On Gallagher's prime number theorem”, Proc. Japan Acad. Ser. A: Math. Sci., 53:2 (1977), 50–52 | DOI | MR | Zbl
[18] Motohashi Y., “Primes in arithmetic progressions”, Invent. math., 44:2 (1978), 163–178 | DOI | MR | Zbl
[19] Motohashi Y., Lectures on sieve methods and prime number theory, Lect. Math. Phys. Math., 72, Springer, Berlin, 1983 | MR | Zbl
[20] OEIS Foundation., The On-Line Encyclopedia of Integer Sequences, 2019 http://oeis.org
[21] Pintz J., “Elementary methods in the theory of $L$-functions. II: On the greatest real zero of a real $L$-function”, Acta arith., 31 (1976), 273–289 | DOI | MR | Zbl
[22] Platt D.J., “Numerical computations concerning the GRH”, Math. Comput., 85:302 (2016), 3009–3027 ; arXiv: 1305.3087 [math.NT] | DOI | MR | Zbl
[23] Platt D.J., Ramaré O., “Explicit estimates: from $\Lambda (n)$ in arithmetic progressions to $\Lambda (n)/n$”, Exp. Math., 26:1 (2017), 77–92 | DOI | MR | Zbl
[24] Ramachandra K., “Some problems of analytic number theory”, Acta arith., 31:4 (1976), 313–324 | DOI | MR | Zbl
[25] Ramanujan S., “Irregular numbers”, J. Indian Math. Soc., 5 (1913), 105–106 ; Collected papers of Srinivasa Ramanujan, Cambridge Univ. Press, Cambridge, 2015, 20–21 | Zbl
[26] Ramaré O., “On Šnirel'man's constant”, Ann. Sc. Norm. Pisa. Cl. Sci. Sér. 4, 22:4 (1995), 645–706 | MR | Zbl
[27] Ramaré O., “Eigenvalues in the large sieve inequality”, Funct. approx. Comment. math., 37:2 (2007), 399–427 | DOI | MR | Zbl
[28] Ramaré O., Arithmetical aspects of the large sieve inequality. With the collaboration of D.S. Ramana, Harish-Chandra Res. Inst. Lect. Notes, 1, Hindustan Book Agency, New Delhi, 2009 | MR | Zbl
[29] Ramaré O., “On Bombieri's asymptotic sieve”, J. Number Theory, 130:5 (2010), 1155–1189 | DOI | MR | Zbl
[30] Ramaré O., “Some elementary explicit bounds for two mollifications of the Moebius function”, Funct. approx. Comment. math., 49:2 (2013), 229–240 | DOI | MR | Zbl
[31] Ramaré O., “Explicit estimates on several summatory functions involving the Moebius function”, Math. Comput., 84:293 (2015), 1359–1387 | DOI | MR | Zbl
[32] Ramaré O., “An explicit density estimate for Dirichlet $L$-series”, Math. Comput., 85:297 (2016), 335–356 | MR
[33] Ramaré O., “Modified truncated Perron formulae”, Ann. Math. Blaise Pascal, 23:1 (2016), 109–128 | DOI | MR | Zbl
[34] Rankin R.A., “The difference between consecutive prime numbers”, J. London Math. Soc., 13 (1938), 242–247 | DOI | MR
[35] Riesel H., Vaughan R.C., “On sums of primes”, Ark. Mat., 21 (1983), 45–74 | DOI | MR | Zbl
[36] Rosser J.B., Schoenfeld L., “Approximate formulas for some functions of prime numbers”, Ill. J. Math., 6 (1962), 64–94 | MR | Zbl
[37] Selberg A., “On elementary methods in prime number theory and their limitations”, C. r. 11ème Congrès des mathematiciens Scandinaves, Trondheim, 1949, Johan Grundt Tanums Forlag, Oslo, 1952, 13–22 | MR
[38] I. M. Vinogradov, “Representation of an odd number as a sum of three primes”, Dokl. Akad. Nauk SSSR, 15:6–7 (1937), 291–294 | Zbl
[39] I. M. Vinogradov, The Method of Trigonometrical Sums in the Theory of Numbers, Dover Publ., Mineola, NY, 2004 | MR | MR | Zbl
[40] A. A. Karatsuba and S. M. Voronin, The Riemann Zeta-Function, W. de Gruyter, Berlin, 1992 | MR | MR | Zbl
[41] Zhan T., “On the representation of large odd integer as a sum of three almost equal primes”, Acta math. Sin. New Ser., 7:3 (1991), 259–272 | DOI | MR | Zbl