Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_314_a7, author = {M\'at\'e Matolcsi and Imre Z. Ruzsa}, title = {Difference {Sets} and {Positive} {Exponential} {Sums.} {II:} {Cubic} {Residues} in {Cyclic} {Groups}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {145--151}, publisher = {mathdoc}, volume = {314}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a7/} }
TY - JOUR AU - Máté Matolcsi AU - Imre Z. Ruzsa TI - Difference Sets and Positive Exponential Sums. II: Cubic Residues in Cyclic Groups JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 145 EP - 151 VL - 314 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_314_a7/ LA - ru ID - TM_2021_314_a7 ER -
%0 Journal Article %A Máté Matolcsi %A Imre Z. Ruzsa %T Difference Sets and Positive Exponential Sums. II: Cubic Residues in Cyclic Groups %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 145-151 %V 314 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2021_314_a7/ %G ru %F TM_2021_314_a7
Máté Matolcsi; Imre Z. Ruzsa. Difference Sets and Positive Exponential Sums. II: Cubic Residues in Cyclic Groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 145-151. http://geodesic.mathdoc.fr/item/TM_2021_314_a7/
[1] Cohen S.D., “Clique numbers of Paley graphs”, Quaest. math., 11:2 (1988), 225–231 | DOI | MR | Zbl
[2] M. R. Gabdullin, “Sets in $\mathbb Z_m$ whose difference sets avoid squares”, Sb. Math., 209:11 (2018), 1603–1610 | DOI | MR | Zbl
[3] Matolcsi M., Ruzsa I.Z., “Difference sets and positive exponential sums. I: General properties”, J. Fourier Anal. Appl., 20:1 (2014), 17–41 | DOI | MR | Zbl
[4] Vaughan R.C., The Hardy–Littlewood method, Cambridge Tracts Math., 125, 2nd ed., Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl