On the Hurwitz Zeta-Function with Algebraic Irrational Parameter. II
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 134-144

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the Hurwitz zeta-function $\zeta (s,\alpha )$ with transcendental or rational parameter $\alpha $ has a discrete universality property; i.e., the shifts $\zeta (s+ikh,\alpha )$, $k\in \mathbb N_0$, $h> 0$, approximate a wide class of analytic functions. The case of algebraic irrational $\alpha $ is a complicated open problem. In the paper, some progress in this problem is achieved. It is proved that there exists a nonempty closed set $F_{\alpha ,h}$ of analytic functions such that the functions in $F_{\alpha ,h}$ are approximated by the above shifts. Also, the case of certain compositions $\Phi (\zeta (s,\alpha ))$ is discussed.
@article{TM_2021_314_a6,
     author = {A. Laurin\v{c}ikas},
     title = {On the {Hurwitz} {Zeta-Function} with {Algebraic} {Irrational} {Parameter.} {II}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {134--144},
     publisher = {mathdoc},
     volume = {314},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a6/}
}
TY  - JOUR
AU  - A. Laurinčikas
TI  - On the Hurwitz Zeta-Function with Algebraic Irrational Parameter. II
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 134
EP  - 144
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_314_a6/
LA  - ru
ID  - TM_2021_314_a6
ER  - 
%0 Journal Article
%A A. Laurinčikas
%T On the Hurwitz Zeta-Function with Algebraic Irrational Parameter. II
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 134-144
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_314_a6/
%G ru
%F TM_2021_314_a6
A. Laurinčikas. On the Hurwitz Zeta-Function with Algebraic Irrational Parameter. II. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 134-144. http://geodesic.mathdoc.fr/item/TM_2021_314_a6/