Kloosterman Sums with Primes and Solvability of a Congruence with Inverse Residues
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 103-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the solvability of the congruence $g(p_1)+\dots +g(p_k)\equiv m\pmod {q}$ in primes $p_1,\dots ,p_k\leq N$, $N\leq q^{1-\gamma }$, $\gamma >0$, is addressed. Here $g(x)\equiv a\overline {x}+bx\pmod {q}$, $\overline {x}$ is the inverse of the residue $x$, i.e., $\overline {x}x\equiv 1\pmod {q}$, $q\geq 3$, and $a$, $b$, $m$, and $k\geq 3$ are arbitrary integers with $(ab,q)=1$. The analysis of this congruence is based on new estimates of the Kloosterman sums with primes. The main result of the study is an asymptotic formula for the number of solutions in the case when the modulus $q$ is divisible by neither $2$ nor $3$.
@article{TM_2021_314_a5,
     author = {M. A. Korolev},
     title = {Kloosterman {Sums} with {Primes} and {Solvability} of a {Congruence} with {Inverse} {Residues}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {103--133},
     publisher = {mathdoc},
     volume = {314},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a5/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - Kloosterman Sums with Primes and Solvability of a Congruence with Inverse Residues
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 103
EP  - 133
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_314_a5/
LA  - ru
ID  - TM_2021_314_a5
ER  - 
%0 Journal Article
%A M. A. Korolev
%T Kloosterman Sums with Primes and Solvability of a Congruence with Inverse Residues
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 103-133
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_314_a5/
%G ru
%F TM_2021_314_a5
M. A. Korolev. Kloosterman Sums with Primes and Solvability of a Congruence with Inverse Residues. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 103-133. http://geodesic.mathdoc.fr/item/TM_2021_314_a5/

[1] Baker R.C., “Kloosterman sums with prime variable”, Acta arith., 156:4 (2012), 351–372 | DOI | MR | Zbl

[2] Bourgain J., “More on the sum–product phenomenon in prime fields and its applications”, Int. J. Number Theory, 1:1 (2005), 1–32 | DOI | MR | Zbl

[3] J. Bourgain and M. Z. Garaev, “Sumsets of reciprocals in prime fields and multilinear Kloosterman sums”, Izv. Math., 78:4 (2014), 656–707 | DOI | MR | Zbl

[4] H. Davenport, Multiplicative Number Theory, Markham Publ., Chicago, 1967 | MR | MR | Zbl

[5] Estermann T., “On Kloosterman's sum”, Mathematika, 8:1 (1961), 83–86 | DOI | MR | Zbl

[6] Fouvry É., Michel P., “Sur certaines sommes d'exponentielles sur les nombres premiers”, Ann. sci. Éc. norm. supér., 31:1 (1998), 93–130 | DOI | MR | Zbl

[7] Fouvry É., Shparlinski I.E., “On a ternary quadratic form over primes”, Acta arith., 150:3 (2011), 285–314 | DOI | MR | Zbl

[8] M. Z. Garaev, “Estimation of Kloosterman sums with primes and its application”, Math. Notes, 88:3 (2010), 330–337 | DOI | MR | MR | Zbl

[9] Hardy G.H., Wright E.M., An introduction to the theory of numbers, Clarendon Press, Oxford, 1979 | MR | Zbl

[10] Ivić A., “On squarefree numbers with restricted prime factors”, Stud. sci. math. Hung., 20 (1985), 189–192 | MR | Zbl

[11] M. A. Korolev, “Generalized Kloosterman sum with primes”, Proc. Steklov Inst. Math., 296 (2017), 154–171 | DOI | MR | Zbl

[12] M. A. Korolev, “New estimate for a Kloosterman sum with primes for a composite modulus”, Sb. Math., 209:5 (2018), 652–659 | DOI | MR | Zbl

[13] M. A. Korolev, “Elementary proof of an estimate for Kloosterman sums with primes”, Math. Notes, 103:5–6 (2018), 761–768 | DOI | MR | Zbl

[14] M. A. Korolev, “Divisors of a quadratic form with primes”, Proc. Steklov Inst. Math., 303 (2018), 154–170 | DOI | MR | Zbl

[15] M. A. Korolev, “Short Kloosterman sums with primes”, Math. Notes, 106:1–2 (2019), 89–97 | DOI | MR | Zbl

[16] Korolev M.A., “Kloosterman sums over primes of composite moduli”, Res. Number Theory, 6:2 (2020), 24 | DOI | MR | Zbl

[17] Korolev M.A., “Kloosterman sums with primes and the solvability of one congruence with inverse residues. II”, Chebyshev. sb., 21:1 (2020), 200–211 | MR | Zbl

[18] M. A. Korolev and M. E. Changa, “New estimate for Kloosterman sums with primes”, Math. Notes, 108:1–2 (2020), 87–93 | DOI | MR | MR | Zbl

[19] Mardzhanishvili K.K., “Otsenka odnoi arifmeticheskoi summy”, DAN SSSR, 22:7 (1939), 391–393

[20] K. Prachar, Primzahlverteilung, Grundl. Math. Wiss., 91, Springer, Berlin, 1957 | MR | Zbl

[21] Ramanujan S., “On certain trigonometrical sums and their applications in the theory of numbers”, Trans. Cambridge Philos. Soc., 22:13 (1918), 259–276

[22] Salié H., “Über die Kloostermanschen Summen $S(u,v;q)$”, Math. Z., 34 (1931), 91–109 | DOI | MR

[23] Tenenbaum G., Introduction to analytic and probabilistic number theory, Cambridge Stud. Adv. Math., 46, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[24] A. A. Karatsuba and S. M. Voronin, The Riemann Zeta-Function, W. de Gruyter, Berlin, 1992 | MR | MR | Zbl

[25] Weil A., Basic number theory, 3rd ed., Springer, Berlin, 1974 | MR | Zbl