Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_314_a5, author = {M. A. Korolev}, title = {Kloosterman {Sums} with {Primes} and {Solvability} of a {Congruence} with {Inverse} {Residues}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {103--133}, publisher = {mathdoc}, volume = {314}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a5/} }
TY - JOUR AU - M. A. Korolev TI - Kloosterman Sums with Primes and Solvability of a Congruence with Inverse Residues JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 103 EP - 133 VL - 314 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_314_a5/ LA - ru ID - TM_2021_314_a5 ER -
M. A. Korolev. Kloosterman Sums with Primes and Solvability of a Congruence with Inverse Residues. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 103-133. http://geodesic.mathdoc.fr/item/TM_2021_314_a5/
[1] Baker R.C., “Kloosterman sums with prime variable”, Acta arith., 156:4 (2012), 351–372 | DOI | MR | Zbl
[2] Bourgain J., “More on the sum–product phenomenon in prime fields and its applications”, Int. J. Number Theory, 1:1 (2005), 1–32 | DOI | MR | Zbl
[3] J. Bourgain and M. Z. Garaev, “Sumsets of reciprocals in prime fields and multilinear Kloosterman sums”, Izv. Math., 78:4 (2014), 656–707 | DOI | MR | Zbl
[4] H. Davenport, Multiplicative Number Theory, Markham Publ., Chicago, 1967 | MR | MR | Zbl
[5] Estermann T., “On Kloosterman's sum”, Mathematika, 8:1 (1961), 83–86 | DOI | MR | Zbl
[6] Fouvry É., Michel P., “Sur certaines sommes d'exponentielles sur les nombres premiers”, Ann. sci. Éc. norm. supér., 31:1 (1998), 93–130 | DOI | MR | Zbl
[7] Fouvry É., Shparlinski I.E., “On a ternary quadratic form over primes”, Acta arith., 150:3 (2011), 285–314 | DOI | MR | Zbl
[8] M. Z. Garaev, “Estimation of Kloosterman sums with primes and its application”, Math. Notes, 88:3 (2010), 330–337 | DOI | MR | MR | Zbl
[9] Hardy G.H., Wright E.M., An introduction to the theory of numbers, Clarendon Press, Oxford, 1979 | MR | Zbl
[10] Ivić A., “On squarefree numbers with restricted prime factors”, Stud. sci. math. Hung., 20 (1985), 189–192 | MR | Zbl
[11] M. A. Korolev, “Generalized Kloosterman sum with primes”, Proc. Steklov Inst. Math., 296 (2017), 154–171 | DOI | MR | Zbl
[12] M. A. Korolev, “New estimate for a Kloosterman sum with primes for a composite modulus”, Sb. Math., 209:5 (2018), 652–659 | DOI | MR | Zbl
[13] M. A. Korolev, “Elementary proof of an estimate for Kloosterman sums with primes”, Math. Notes, 103:5–6 (2018), 761–768 | DOI | MR | Zbl
[14] M. A. Korolev, “Divisors of a quadratic form with primes”, Proc. Steklov Inst. Math., 303 (2018), 154–170 | DOI | MR | Zbl
[15] M. A. Korolev, “Short Kloosterman sums with primes”, Math. Notes, 106:1–2 (2019), 89–97 | DOI | MR | Zbl
[16] Korolev M.A., “Kloosterman sums over primes of composite moduli”, Res. Number Theory, 6:2 (2020), 24 | DOI | MR | Zbl
[17] Korolev M.A., “Kloosterman sums with primes and the solvability of one congruence with inverse residues. II”, Chebyshev. sb., 21:1 (2020), 200–211 | MR | Zbl
[18] M. A. Korolev and M. E. Changa, “New estimate for Kloosterman sums with primes”, Math. Notes, 108:1–2 (2020), 87–93 | DOI | MR | MR | Zbl
[19] Mardzhanishvili K.K., “Otsenka odnoi arifmeticheskoi summy”, DAN SSSR, 22:7 (1939), 391–393
[20] K. Prachar, Primzahlverteilung, Grundl. Math. Wiss., 91, Springer, Berlin, 1957 | MR | Zbl
[21] Ramanujan S., “On certain trigonometrical sums and their applications in the theory of numbers”, Trans. Cambridge Philos. Soc., 22:13 (1918), 259–276
[22] Salié H., “Über die Kloostermanschen Summen $S(u,v;q)$”, Math. Z., 34 (1931), 91–109 | DOI | MR
[23] Tenenbaum G., Introduction to analytic and probabilistic number theory, Cambridge Stud. Adv. Math., 46, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[24] A. A. Karatsuba and S. M. Voronin, The Riemann Zeta-Function, W. de Gruyter, Berlin, 1992 | MR | MR | Zbl
[25] Weil A., Basic number theory, 3rd ed., Springer, Berlin, 1974 | MR | Zbl