Kloosterman Sums with Primes and Solvability of a Congruence with Inverse Residues
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 103-133

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the solvability of the congruence $g(p_1)+\dots +g(p_k)\equiv m\pmod {q}$ in primes $p_1,\dots ,p_k\leq N$, $N\leq q^{1-\gamma }$, $\gamma >0$, is addressed. Here $g(x)\equiv a\overline {x}+bx\pmod {q}$, $\overline {x}$ is the inverse of the residue $x$, i.e., $\overline {x}x\equiv 1\pmod {q}$, $q\geq 3$, and $a$, $b$, $m$, and $k\geq 3$ are arbitrary integers with $(ab,q)=1$. The analysis of this congruence is based on new estimates of the Kloosterman sums with primes. The main result of the study is an asymptotic formula for the number of solutions in the case when the modulus $q$ is divisible by neither $2$ nor $3$.
@article{TM_2021_314_a5,
     author = {M. A. Korolev},
     title = {Kloosterman {Sums} with {Primes} and {Solvability} of a {Congruence} with {Inverse} {Residues}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {103--133},
     publisher = {mathdoc},
     volume = {314},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a5/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - Kloosterman Sums with Primes and Solvability of a Congruence with Inverse Residues
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 103
EP  - 133
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_314_a5/
LA  - ru
ID  - TM_2021_314_a5
ER  - 
%0 Journal Article
%A M. A. Korolev
%T Kloosterman Sums with Primes and Solvability of a Congruence with Inverse Residues
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 103-133
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_314_a5/
%G ru
%F TM_2021_314_a5
M. A. Korolev. Kloosterman Sums with Primes and Solvability of a Congruence with Inverse Residues. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 103-133. http://geodesic.mathdoc.fr/item/TM_2021_314_a5/