On Irregularity of Finite Sequences
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 97-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sequence $(x_1,x_2,\dots ,x_{N+d})$ of numbers in $[0,1)$ is said to be $N$-regular with at most $d$ irregularities if for every $n=1,\dots ,N$ each of the intervals $[0,1),[1,2),\dots ,[n-1,n)$ contains at least one element of the sequence $(nx_1,nx_2,\dots ,nx_{n+d})$. The maximum $N$ for which there exists an $N$-regular sequence with at most $d$ irregularities is denoted by $s(d)$. We show that $s(d)\ge 2d$ for any positive integer $d$ and that $s(d)200d$ for all sufficiently large $d$.
Keywords: distribution of sequences of real numbers.
@article{TM_2021_314_a4,
     author = {S. V. Konyagin},
     title = {On {Irregularity} of {Finite} {Sequences}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {97--102},
     publisher = {mathdoc},
     volume = {314},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a4/}
}
TY  - JOUR
AU  - S. V. Konyagin
TI  - On Irregularity of Finite Sequences
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 97
EP  - 102
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_314_a4/
LA  - ru
ID  - TM_2021_314_a4
ER  - 
%0 Journal Article
%A S. V. Konyagin
%T On Irregularity of Finite Sequences
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 97-102
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_314_a4/
%G ru
%F TM_2021_314_a4
S. V. Konyagin. On Irregularity of Finite Sequences. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 97-102. http://geodesic.mathdoc.fr/item/TM_2021_314_a4/

[1] Berlekamp E.R., Graham R.L., “Irregularities in the distributions of finite sequences”, J. Number Theory, 2:2 (1970), 152–161 | DOI | MR | Zbl

[2] Graham R.L., “A note on irregularities of distribution”, Integers, 13 (2013), A53 | MR | Zbl

[3] Levy K., “Lower and upper bounds on irregularities of distribution”, Integers, 20 (2020), A26 | MR | Zbl

[4] Oliveira e Silva T., A problem related to the 17 point problem of Steinhaus, 2016 https://mathoverflow.net/q/260116

[5] Roth K.F., “On irregularities of distribution”, Mathematika, 1:2 (1954), 73–79 | DOI | MR | Zbl

[6] H. Steinhaus, One Hundred Problems in Elementary Mathematics, Basic Books, New York, 1964 | MR | MR

[7] Vinogradov I.M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1980 | MR

[8] Warmus M., “A supplementary note on the irregularities of distributions”, J. Number Theory, 8:3 (1976), 260–263 | DOI | MR | Zbl