Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_314_a2, author = {Pablo Candela and Carlos Catal\'a and Juanjo Ru\'e and Oriol Serra}, title = {On {Motzkin's} {Problem} in the {Circle} {Group}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {49--70}, publisher = {mathdoc}, volume = {314}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a2/} }
TY - JOUR AU - Pablo Candela AU - Carlos Catalá AU - Juanjo Rué AU - Oriol Serra TI - On Motzkin's Problem in the Circle Group JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 49 EP - 70 VL - 314 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_314_a2/ LA - ru ID - TM_2021_314_a2 ER -
Pablo Candela; Carlos Catalá; Juanjo Rué; Oriol Serra. On Motzkin's Problem in the Circle Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 49-70. http://geodesic.mathdoc.fr/item/TM_2021_314_a2/
[1] Albertson M.O., Collins K.L., “Homomorphisms of 3-chromatic graphs”, Discrete Math., 54 (1985), 127–132 | DOI | MR | Zbl
[2] Avila A., Candela P., “Towers for commuting endomorphisms, and combinatorial applications”, Ann. Inst. Fourier, 66:4 (2016), 1529–1544 | DOI | MR | Zbl
[3] Bermond J.C., Comellas F., Hsu D.F., “Distributed loop computer-networks: A survey”, J. Parallel Distrib. Comput., 24:1 (1995), 2–10 | DOI
[4] Cai J.-Y., Havas G., Mans B., Nerurkar A., Seifert J.-P., Shparlinski I., “On routing in circulant graphs”, Computing and combinatorics, Proc. 5th Annu. Int. Conf. COCOON'99 (Tokyo, 1999), Lect. Notes Comput. Sci., 1627, Springer, Berlin, 1999, 360–369 | DOI | MR
[5] Cantor D.G., Gordon B., “Sequences of integers with missing differences”, J. Comb. Theory. Ser. A, 14 (1973), 281–287 | DOI | MR | Zbl
[6] Cassels J.W.S., An introduction to the geometry of numbers, Class. Math., Springer, Berlin, 1997 | MR | Zbl
[7] Codenotti B., Gerace I., Vigna S., “Hardness results and spectral techniques for combinatorial problems on circulant graphs”, Linear Algebra Appl., 285:1–3 (1998), 123–142 | DOI | MR | Zbl
[8] Conze J.P., “Entropie d'un groupe abélien de transformations”, Z. Wahrscheinlichkeitstheor. verw. Geb., 25 (1972), 11–30 | DOI | MR | Zbl
[9] Costa S.I.R., Strapasson J.E., Alves M.M.S., Carlos T.B., “Circulant graphs and tessellations on flat tori”, Linear Algebra Appl., 432:1 (2010), 369–382 | DOI | MR | Zbl
[10] Dooley A.H., Zhang G., Local entropy theory of a random dynamical system, Mem. AMS, 233, N 1099, Amer. Math. Soc., Providence, RI, 2015 | MR
[11] Fiz Pontiveros G., “Sums of dilates in $\mathbb Z_p$”, Comb. Probab. Comput., 22:2 (2013), 282–293 | DOI | MR | Zbl
[12] Gao G., Zhu X., “Star-extremal graphs and the lexicographic product”, Discrete Math., 152:1–3 (1996), 147–156 | DOI | MR | Zbl
[13] Gómez D., Gutierrez J., Ibeas Á., “Optimal routing in double loop networks”, Theor. Comput. Sci., 381:1–3 (2007), 68–85 | DOI | MR | Zbl
[14] Gupta S., “Sets of integers with missing differences”, J. Comb. Theory. Ser. A, 89:1 (2000), 55–69 | DOI | MR | Zbl
[15] Hahn G., Tardif C., “Graph homomorphisms: Structure and symmetry”, Graph symmetry: Algebraic methods and applications, Proc. NATO Adv. Study Inst. sémin. math. supér. (Montréal, 1996), NATO ASI Ser. C. Math. Phys. Sci., 497, Kluwer, Dordrecht, 1997, 107–166 | MR | Zbl
[16] Haralambis N.M., “Sets of integers with missing differences”, J. Comb. Theory. Ser. A, 23 (1977), 22–33 | DOI | MR | Zbl
[17] Hoshino R., Independence polynomials of circulant graphs, PhD thesis, Dalhousie Univ., Halifax, 2007 | MR
[18] Hwang F.K., “A complementary survey on double-loop networks”, Theor. Comput. Sci., 263:1–2 (2001), 211–229 | DOI | MR | Zbl
[19] Kaib M., Schnorr C.P., “The generalized Gauss reduction algorithm”, J. Algorithms, 21:3 (1996), 565–578 | DOI | MR | Zbl
[20] Katznelson Y., Weiss B., “Commuting measure-preserving transformations”, Isr. J. Math., 12 (1972), 161–173 | DOI | MR | Zbl
[21] Kechris A.S., Classical descriptive set theory, Grad. Texts Math., 156, Springer, New York, 1995 | DOI | MR | Zbl
[22] Kleitman D.J., “On a combinatorial conjecture of Erdős”, J. Comb. Theory, 1 (1966), 209–214 | DOI | MR | Zbl
[23] Lih K.-W., Liu D.D.-F., Zhu X., “Star-extremal circulant graphs”, SIAM J. Discrete Math., 12:4 (1999), 491–499 | DOI | MR | Zbl
[24] Lindenstrauss E., “Pointwise theorems for amenable groups”, Invent. math., 146:2 (2001), 259–295 | DOI | MR | Zbl
[25] Lindenstrauss E., Weiss B., “Mean topological dimension”, Isr. J. Math., 115 (2000), 1–24 | DOI | MR | Zbl
[26] Liu D.D.-F., “From rainbow to the lonely runner: A survey on coloring parameters of distance graphs”, Taiwanese J. Math., 12:4 (2008), 851–871 | DOI | MR | Zbl
[27] Liu D.D.-F., Robinson G., “Sequences of integers with three missing separations”, Eur. J. Comb., 85 (2020), 103056 | DOI | MR | Zbl
[28] Marklof J., Strömbergsson A., “Diameters of random circulant graphs”, Combinatorica, 33:4 (2013), 429–466 | DOI | MR | Zbl
[29] Ornstein D.S., Weiss B., “Entropy and isomorphism theorems for actions of amenable groups”, J. anal. math., 48 (1987), 1–141 | DOI | MR | Zbl
[30] Pandey R.K., “Maximal upper asymptotic density of sets of integers with missing differences from a given set”, Math. Bohem., 140:1 (2015), 53–69 | DOI | MR | Zbl
[31] Pandey R.K., Tripathi A., “On the density of integral sets with missing differences”, Combinatorial number theory, Proc. “Integers Conference 2007” (Carrollton, GA, 2007), W. de Gruyter, Berlin, 2009, 157–169 | MR | Zbl
[32] Srivastava A., Pandey R.K., Prakash O., “Motzkin's maximal density and related chromatic numbers”, Unif. Distrib. Theory, 13:1 (2018), 27–45 | DOI | MR | Zbl
[33] Wong C.K., Coppersmith D., “A combinatorial problem related to multimodule memory organizations”, J. Assoc. Comput. Mach., 21:3 (1974), 392–402 | DOI | MR | Zbl