On Motzkin's Problem in the Circle Group
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 49-70

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a subset $D$ of the interval $(0,1)$, if a Borel set $A\subset [0,1)$ contains no pair of elements whose difference modulo $1$ is in $D$, then how large can the Lebesgue measure of $A$ be? This is the analogue in the circle group of a well-known problem of Motzkin, originally posed for sets of integers. We make a first treatment of this circle-group analogue, for finite sets $D$ of missing differences, using techniques from ergodic theory, graph theory and the geometry of numbers. Our results include an exact solution when $D$ has two elements at least one of which is irrational. When every element of $D$ is rational, the problem is equivalent to estimating the independence ratio of a circulant graph. In the case of two rational elements, we give an estimate for this ratio in terms of the odd girth of the graph, which is asymptotically sharp and also recovers the classical solution of Cantor and Gordon to Motzkin's original problem for two missing differences.
@article{TM_2021_314_a2,
     author = {Pablo Candela and Carlos Catal\'a and Juanjo Ru\'e and Oriol Serra},
     title = {On {Motzkin's} {Problem} in the {Circle} {Group}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {49--70},
     publisher = {mathdoc},
     volume = {314},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a2/}
}
TY  - JOUR
AU  - Pablo Candela
AU  - Carlos Catalá
AU  - Juanjo Rué
AU  - Oriol Serra
TI  - On Motzkin's Problem in the Circle Group
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 49
EP  - 70
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_314_a2/
LA  - ru
ID  - TM_2021_314_a2
ER  - 
%0 Journal Article
%A Pablo Candela
%A Carlos Catalá
%A Juanjo Rué
%A Oriol Serra
%T On Motzkin's Problem in the Circle Group
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 49-70
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_314_a2/
%G ru
%F TM_2021_314_a2
Pablo Candela; Carlos Catalá; Juanjo Rué; Oriol Serra. On Motzkin's Problem in the Circle Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 49-70. http://geodesic.mathdoc.fr/item/TM_2021_314_a2/