On the Spectral Gap and the Diameter of Cayley Graphs
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 318-337.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a new bound connecting the first nontrivial eigenvalue of the Laplace operator on a graph and the diameter of the graph. This bound is effective for graphs with small diameter as well as for graphs with the number of maximal paths comparable to the expected value.
@article{TM_2021_314_a15,
     author = {I. D. Shkredov},
     title = {On the {Spectral} {Gap} and the {Diameter} of {Cayley} {Graphs}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {318--337},
     publisher = {mathdoc},
     volume = {314},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a15/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - On the Spectral Gap and the Diameter of Cayley Graphs
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 318
EP  - 337
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_314_a15/
LA  - ru
ID  - TM_2021_314_a15
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T On the Spectral Gap and the Diameter of Cayley Graphs
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 318-337
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_314_a15/
%G ru
%F TM_2021_314_a15
I. D. Shkredov. On the Spectral Gap and the Diameter of Cayley Graphs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 318-337. http://geodesic.mathdoc.fr/item/TM_2021_314_a15/

[1] L. A. Bassalygo and M. S. Pinsker, “On the complexity of an optimal non-blocking commutation scheme without reorganization”, Probl. Inf. Transm., 9 (1974), 64–66 | MR | Zbl

[2] Bourgain J., “On triples in arithmetic progression”, Geom. Funct. Anal., 9:5 (1999), 968–984 | DOI | MR | Zbl

[3] Diaconis P., Saloff-Coste L., “Comparison techniques for random walk on finite groups”, Ann. Probab., 21:4 (1993), 2131–2156 | DOI | MR | Zbl

[4] Erdős P., Turán P., “On a problem of Sidon in additive number theory, and on some related problems”, J. London Math. Soc., 16 (1941), 212–215 | MR

[5] Kowalski E., An introduction to expander graphs, Soc. math. France, Paris, 2019 | MR | Zbl

[6] Lev V.F., “Distribution of points on arcs”, Integers, 5:2 (2005), A11 | MR | Zbl

[7] Lubotzky A., Discrete groups, expanding graphs and invariant measures, Prog. Math., 125, Birkaüser, Basel, 1994 | MR | Zbl

[8] G. A. Margulis, “Explicit group-theoretical constructions of combinatorial schemes and their application to the design of expanders and concentrators”, Probl. Inf. Transm., 24 (1988), 39–46 | MR | Zbl

[9] Moschevitin N.G., “O chislakh s propuschennymi tsiframi: elementarnoe dokazatelstvo odnogo rezultata S.V. Konyagina”, Chebyshev. sb., 3:2 (2002), 93–99 | MR

[10] Naimark M.A., Teoriya predstavlenii grupp, 2-e izd., Fizmatlit, M., 2010

[11] O'Bryant K., “A complete annotated bibliography of work related to Sidon sequences”, Electron. J. Comb., DS11 (2004), 1–39

[12] Pinsker M.S., “On the complexity of a concentrator”, 7th International Teletraffic Congress, ITC, Stockholm, 1973, 318/1–318/4

[13] Saloff-Coste L., “Lectures on finite Markov chains”, Lectures on probability theory and statistics, Lect. Notes Math., 1665, Springer, Berlin, 1997, 301–413 | DOI | MR | Zbl

[14] Sanders T., “A quantitative version of the non-abelian idempotent theorem”, Geom. Funct. Anal., 21:1 (2011), 141–221 ; arXiv: 0912.0308 [math.CA] | DOI | MR | Zbl

[15] Sanders T., “Approximate groups and doubling metrics”, Math. Proc. Cambridge Philos. Soc., 152:3 (2012), 385–404 | DOI | MR | Zbl

[16] Sanders T., Applications of commutative harmonic analysis, Preprint, Math. Inst., Univ. Oxford, Oxford, 2015 http://people.maths.ox.ac.uk/~sanders/acha/notes.pdf

[17] Sarnak P., Xue X., “Bounds for multiplicities of automorphic representations”, Duke Math. J., 64:1 (1991), 207–227 | DOI | MR | Zbl

[18] Serre J.-P., Représentations linéaires des groupes finis, Collections méthodes, Hermann, Paris, 1967 | MR

[19] Tao T., Vu V.H., Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[20] Yudin A.A., “O mere bolshikh znachenii modulya trigonometricheskoi summy”, Teoretiko-chislovye issledovaniya po spektru Markova i strukturnoi teorii slozheniya mnozhestv, Kalininskii gos. un-t, M., 1973, 163–174