On the Spectral Gap and the Diameter of Cayley Graphs
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 318-337
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a new bound connecting the first nontrivial eigenvalue of the Laplace operator on a graph and the diameter of the graph. This bound is effective for graphs with small diameter as well as for graphs with the number of maximal paths comparable to the expected value.
@article{TM_2021_314_a15,
author = {I. D. Shkredov},
title = {On the {Spectral} {Gap} and the {Diameter} of {Cayley} {Graphs}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {318--337},
publisher = {mathdoc},
volume = {314},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a15/}
}
I. D. Shkredov. On the Spectral Gap and the Diameter of Cayley Graphs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 318-337. http://geodesic.mathdoc.fr/item/TM_2021_314_a15/