Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_314_a15, author = {I. D. Shkredov}, title = {On the {Spectral} {Gap} and the {Diameter} of {Cayley} {Graphs}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {318--337}, publisher = {mathdoc}, volume = {314}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a15/} }
I. D. Shkredov. On the Spectral Gap and the Diameter of Cayley Graphs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 318-337. http://geodesic.mathdoc.fr/item/TM_2021_314_a15/
[1] L. A. Bassalygo and M. S. Pinsker, “On the complexity of an optimal non-blocking commutation scheme without reorganization”, Probl. Inf. Transm., 9 (1974), 64–66 | MR | Zbl
[2] Bourgain J., “On triples in arithmetic progression”, Geom. Funct. Anal., 9:5 (1999), 968–984 | DOI | MR | Zbl
[3] Diaconis P., Saloff-Coste L., “Comparison techniques for random walk on finite groups”, Ann. Probab., 21:4 (1993), 2131–2156 | DOI | MR | Zbl
[4] Erdős P., Turán P., “On a problem of Sidon in additive number theory, and on some related problems”, J. London Math. Soc., 16 (1941), 212–215 | MR
[5] Kowalski E., An introduction to expander graphs, Soc. math. France, Paris, 2019 | MR | Zbl
[6] Lev V.F., “Distribution of points on arcs”, Integers, 5:2 (2005), A11 | MR | Zbl
[7] Lubotzky A., Discrete groups, expanding graphs and invariant measures, Prog. Math., 125, Birkaüser, Basel, 1994 | MR | Zbl
[8] G. A. Margulis, “Explicit group-theoretical constructions of combinatorial schemes and their application to the design of expanders and concentrators”, Probl. Inf. Transm., 24 (1988), 39–46 | MR | Zbl
[9] Moschevitin N.G., “O chislakh s propuschennymi tsiframi: elementarnoe dokazatelstvo odnogo rezultata S.V. Konyagina”, Chebyshev. sb., 3:2 (2002), 93–99 | MR
[10] Naimark M.A., Teoriya predstavlenii grupp, 2-e izd., Fizmatlit, M., 2010
[11] O'Bryant K., “A complete annotated bibliography of work related to Sidon sequences”, Electron. J. Comb., DS11 (2004), 1–39
[12] Pinsker M.S., “On the complexity of a concentrator”, 7th International Teletraffic Congress, ITC, Stockholm, 1973, 318/1–318/4
[13] Saloff-Coste L., “Lectures on finite Markov chains”, Lectures on probability theory and statistics, Lect. Notes Math., 1665, Springer, Berlin, 1997, 301–413 | DOI | MR | Zbl
[14] Sanders T., “A quantitative version of the non-abelian idempotent theorem”, Geom. Funct. Anal., 21:1 (2011), 141–221 ; arXiv: 0912.0308 [math.CA] | DOI | MR | Zbl
[15] Sanders T., “Approximate groups and doubling metrics”, Math. Proc. Cambridge Philos. Soc., 152:3 (2012), 385–404 | DOI | MR | Zbl
[16] Sanders T., Applications of commutative harmonic analysis, Preprint, Math. Inst., Univ. Oxford, Oxford, 2015 http://people.maths.ox.ac.uk/~sanders/acha/notes.pdf
[17] Sarnak P., Xue X., “Bounds for multiplicities of automorphic representations”, Duke Math. J., 64:1 (1991), 207–227 | DOI | MR | Zbl
[18] Serre J.-P., Représentations linéaires des groupes finis, Collections méthodes, Hermann, Paris, 1967 | MR
[19] Tao T., Vu V.H., Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl
[20] Yudin A.A., “O mere bolshikh znachenii modulya trigonometricheskoi summy”, Teoretiko-chislovye issledovaniya po spektru Markova i strukturnoi teorii slozheniya mnozhestv, Kalininskii gos. un-t, M., 1973, 163–174