On Sumsets of Subsets of Squares
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 311-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A\subseteq \{1,\dots ,N\}$ be a set of size $\delta N$. We prove a Bogolyubov–Ruzsa type result that $A^2+A^2+A^2-A^2-A^2-A^2$ contains a large low-dimensional generalized arithmetic progression.
Keywords: additive theorems, squares.
@article{TM_2021_314_a14,
     author = {Tomasz Schoen},
     title = {On {Sumsets} of {Subsets} of {Squares}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {311--317},
     publisher = {mathdoc},
     volume = {314},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a14/}
}
TY  - JOUR
AU  - Tomasz Schoen
TI  - On Sumsets of Subsets of Squares
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 311
EP  - 317
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_314_a14/
LA  - ru
ID  - TM_2021_314_a14
ER  - 
%0 Journal Article
%A Tomasz Schoen
%T On Sumsets of Subsets of Squares
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 311-317
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_314_a14/
%G ru
%F TM_2021_314_a14
Tomasz Schoen. On Sumsets of Subsets of Squares. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 311-317. http://geodesic.mathdoc.fr/item/TM_2021_314_a14/

[1] Bourgain J., “On $\Lambda (p)$-subsets of squares”, Isr. J. Math., 67:3 (1989), 291–311 | DOI | MR | Zbl

[2] Browning T.D., Prendiville S., “A transference approach to a Roth-type theorem in the squares”, Int. Math. Res. Not., 2017:7 (2017), 2219–2248 | MR | Zbl

[3] Chow S., Lindqvist S., Prendiville S., “Rado's criterion over squares and higher powers”, J. Eur. Math. Soc., 23:6 (2021), 1925–1997 ; arXiv: 1806.05002 [math.NT] | DOI | MR | Zbl

[4] Croot E., Łaba I., Sisask O., “Arithmetic progressions in sumsets and $L^p$-almost-periodicity”, Comb. Probab. Comput., 22:3 (2013), 351–365 | DOI | MR | Zbl

[5] Gowers W.T., “Decompositions, approximate structure, transference, and the Hahn–Banach theorem”, Bull. London Math. Soc., 42:4 (2010), 573–606 | DOI | MR | Zbl

[6] Green B., “Roth's theorem in the primes”, Ann. Math. Ser. 2, 161:3 (2005), 1609–1636 | DOI | MR | Zbl

[7] Prendiville S., “Four variants of the Fourier-analytic transference principle”, Online J. Anal. Comb., 12 (2017), 5 | MR | Zbl

[8] Reingold O., Trevisan L., Tulsiani M., Vadhan S., New proofs of the Green–Tao–Ziegler dense model theorem: An exposition, E-print, 2008, arXiv: 0806.0381 [math.CO]

[9] Ruzsa I.Z., “Generalized arithmetical progressions and sumsets”, Acta math. Hung., 65:4 (1994), 379–388 | DOI | MR | Zbl

[10] Sanders T., “On the Bogolyubov–Ruzsa lemma”, Anal. PDE, 5:3 (2012), 627–655 | DOI | MR | Zbl

[11] Schoen T., “Near optimal bounds in Freiman's theorem”, Duke Math. J., 158:1 (2011), 1–12 | DOI | MR | Zbl

[12] Tao T., Vu V.H., Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl