Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_314_a14, author = {Tomasz Schoen}, title = {On {Sumsets} of {Subsets} of {Squares}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {311--317}, publisher = {mathdoc}, volume = {314}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a14/} }
Tomasz Schoen. On Sumsets of Subsets of Squares. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 311-317. http://geodesic.mathdoc.fr/item/TM_2021_314_a14/
[1] Bourgain J., “On $\Lambda (p)$-subsets of squares”, Isr. J. Math., 67:3 (1989), 291–311 | DOI | MR | Zbl
[2] Browning T.D., Prendiville S., “A transference approach to a Roth-type theorem in the squares”, Int. Math. Res. Not., 2017:7 (2017), 2219–2248 | MR | Zbl
[3] Chow S., Lindqvist S., Prendiville S., “Rado's criterion over squares and higher powers”, J. Eur. Math. Soc., 23:6 (2021), 1925–1997 ; arXiv: 1806.05002 [math.NT] | DOI | MR | Zbl
[4] Croot E., Łaba I., Sisask O., “Arithmetic progressions in sumsets and $L^p$-almost-periodicity”, Comb. Probab. Comput., 22:3 (2013), 351–365 | DOI | MR | Zbl
[5] Gowers W.T., “Decompositions, approximate structure, transference, and the Hahn–Banach theorem”, Bull. London Math. Soc., 42:4 (2010), 573–606 | DOI | MR | Zbl
[6] Green B., “Roth's theorem in the primes”, Ann. Math. Ser. 2, 161:3 (2005), 1609–1636 | DOI | MR | Zbl
[7] Prendiville S., “Four variants of the Fourier-analytic transference principle”, Online J. Anal. Comb., 12 (2017), 5 | MR | Zbl
[8] Reingold O., Trevisan L., Tulsiani M., Vadhan S., New proofs of the Green–Tao–Ziegler dense model theorem: An exposition, E-print, 2008, arXiv: 0806.0381 [math.CO]
[9] Ruzsa I.Z., “Generalized arithmetical progressions and sumsets”, Acta math. Hung., 65:4 (1994), 379–388 | DOI | MR | Zbl
[10] Sanders T., “On the Bogolyubov–Ruzsa lemma”, Anal. PDE, 5:3 (2012), 627–655 | DOI | MR | Zbl
[11] Schoen T., “Near optimal bounds in Freiman's theorem”, Duke Math. J., 158:1 (2011), 1–12 | DOI | MR | Zbl
[12] Tao T., Vu V.H., Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl