Mean-Value Theorem for Multiple Trigonometric Sums on the Sequence of Bell Polynomials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 301-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mean-value theorem for multiple trigonometric (exponential) sums on the sequence of Bell polynomials is proved. It generalizes I. M. Vinogradov's and G. I. Arkhipov's theorems. As is well known, a mean-value theorem of this type is at the core of Vinogradov's method. The Bell polynomials are very closely related to the Faà di Bruno theorem on higher order derivatives of a composite function. As an application of the mean-value theorem proved in the paper, estimates for the sums $\sum _{n_1\leq P}\dots \sum _{n_r\leq P}e^{2\pi i(\alpha _1Y_1(n_1)+\dots +\alpha _rY_r(n_1,\dots ,n_r))}$ are obtained, where $\alpha _s$ are real numbers and $Y_s(n_1,\dots ,n_s)$ are the degree $s$ Bell polynomials, $1\leq s\leq r$.
Keywords: mean-value theorems of Vinogradov and Arkhipov, sequence of Bell polynomials, Faà di Bruno theorem.
@article{TM_2021_314_a13,
     author = {V. N. Chubarikov},
     title = {Mean-Value {Theorem} for {Multiple} {Trigonometric} {Sums} on the {Sequence} of {Bell} {Polynomials}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {301--310},
     publisher = {mathdoc},
     volume = {314},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a13/}
}
TY  - JOUR
AU  - V. N. Chubarikov
TI  - Mean-Value Theorem for Multiple Trigonometric Sums on the Sequence of Bell Polynomials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 301
EP  - 310
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_314_a13/
LA  - ru
ID  - TM_2021_314_a13
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%T Mean-Value Theorem for Multiple Trigonometric Sums on the Sequence of Bell Polynomials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 301-310
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_314_a13/
%G ru
%F TM_2021_314_a13
V. N. Chubarikov. Mean-Value Theorem for Multiple Trigonometric Sums on the Sequence of Bell Polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 301-310. http://geodesic.mathdoc.fr/item/TM_2021_314_a13/

[1] Arkhipov G.I., Izbrannye trudy, Izd-vo Orlov. gos. un-ta, Orel, 2013

[2] Arkhipov G.I., Karatsuba A.A., Chubarikov V.N., Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987

[3] Arkhipov G.I., Chubarikov V.N., Karatsuba A.A., Trigonometric sums in number theory and analysis, de Gruyter Expo. Math., 39, W. de Gruyter, Berlin, 2004 | MR | Zbl

[4] Arkhipov G.I., Sadovnichii V.A., Chubarikov V.N., Lektsii po matematicheskomu analizu, 4-e izd., Drofa, M., 2004

[5] V. N. Chubarikov, “Multiple trigonometric sums with prime numbers”, Sov. Math., Dokl., 30 (1984), 391–393 | MR | Zbl

[6] V. N. Chubarikov, “Estimates of multiple trigonometric sums with prime numbers”, Math. USSR, Izv., 27:2 (1986), 323–357 | DOI | MR | Zbl | Zbl

[7] Chubarikov V.N., “Ob odnoi teoreme o srednem znachenii kratnykh trigonometricheskikh summ”, Chebyshev. sb., 21:1 (2020), 320–335 | MR | Zbl

[8] Chubarikov V.N., “Teorema o srednem znachenii trigonometricheskikh summ na posledovatelnosti mnogochlenov binomialnogo tipa”, Chebyshev. sb., 21:2 (2020), 403–416 | MR | Zbl

[9] Hurwitz A., “Über Abel's Verallgemeinerung der binomischen Formel”, Acta math., 26 (1902), 199–203 | DOI | MR

[10] Karatsuba A.A., “Teoremy o srednem i polnye trigonometricheskie summy”, Izv. AN SSSR. Ser. mat., 30:1 (1966), 183–206 | Zbl

[11] A. A. Karatsuba and N. M. Korobov, “On the mean-value theorem”, Sov. Math., Dokl., 4 (1963), 350–354 | MR | Zbl

[12] Mullin R., Rota G.-C., “On the foundations of combinatorial theory. III: Theory of binomial enumeration”, Graph theory and its applications, Proc. adv. semin. Univ. Wisconsin (Madison, 1969), Acad. Press, New York, 1970, 167–213 | MR

[13] Pincherle S., Amaldi U., Le operazioni distributive e le loro applicazioni all' analisi, Zanichelli, Bologna, 1901 | MR

[14] J. Riordan, An Introduction to Combinatorial Analysis, J. Wiley Sons, New York, 1958 | MR | Zbl

[15] Riordan J., “Inverse relations and combinatorial identities”, Amer. Math. Mon., 71 (1964), 485–498 | DOI | MR | Zbl

[16] Riordan J., Combinatorial identities, J. Wiley Sons, New York, 1968 | MR | Zbl

[17] Sheffer I.M., “Some properties of polynomial sets of type zero”, Duke Math. J., 5:3 (1939), 590–622 | DOI | MR

[18] Steffensen J.F., “The poweroid, an extension of the mathematical notion of power”, Acta math., 73 (1941), 333–366 | DOI | MR

[19] Touchard J., “Nombres exponentiels et nombres de Bernoulli”, Can. J. Math., 8 (1956), 305–320 | DOI | MR | Zbl

[20] Vinogradov I.M., Metod trigonometricheskikh summ v teorii chisel, 2-e izd., Nauka, M., 1980 | MR