An Asymmetric Bound for Sum of Distance Sets
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 290-300

Voir la notice de l'article provenant de la source Math-Net.Ru

For $E\subset \mathbb F_q^d$, let $\Delta (E)$ denote the distance set determined by pairs of points in $E$. By using additive energies of sets on a paraboloid, Koh, Pham, Shen, and Vinh (2020) proved that if $E,F\subset \mathbb F_q^d$ are subsets with $|E|\cdot |F|\gg q^{d+{1}/{3}}$, then $|\Delta (E)+\Delta (F)|>q/2$. They also proved that the threshold $q^{d+{1}/{3}}$ is sharp when $|E|=|F|$. In this paper, we provide an improvement of this result in the unbalanced case, which is essentially sharp in odd dimensions. The most important tool in our proofs is an optimal $L^2$ restriction theorem for the sphere of zero radius.
@article{TM_2021_314_a12,
     author = {Daewoong Cheong and Doowon Koh and Thang Pham},
     title = {An {Asymmetric} {Bound} for {Sum} of {Distance} {Sets}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {290--300},
     publisher = {mathdoc},
     volume = {314},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a12/}
}
TY  - JOUR
AU  - Daewoong Cheong
AU  - Doowon Koh
AU  - Thang Pham
TI  - An Asymmetric Bound for Sum of Distance Sets
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 290
EP  - 300
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_314_a12/
LA  - ru
ID  - TM_2021_314_a12
ER  - 
%0 Journal Article
%A Daewoong Cheong
%A Doowon Koh
%A Thang Pham
%T An Asymmetric Bound for Sum of Distance Sets
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 290-300
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_314_a12/
%G ru
%F TM_2021_314_a12
Daewoong Cheong; Doowon Koh; Thang Pham. An Asymmetric Bound for Sum of Distance Sets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 290-300. http://geodesic.mathdoc.fr/item/TM_2021_314_a12/