An Asymmetric Bound for Sum of Distance Sets
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 290-300.

Voir la notice de l'article provenant de la source Math-Net.Ru

For $E\subset \mathbb F_q^d$, let $\Delta (E)$ denote the distance set determined by pairs of points in $E$. By using additive energies of sets on a paraboloid, Koh, Pham, Shen, and Vinh (2020) proved that if $E,F\subset \mathbb F_q^d$ are subsets with $|E|\cdot |F|\gg q^{d+{1}/{3}}$, then $|\Delta (E)+\Delta (F)|>q/2$. They also proved that the threshold $q^{d+{1}/{3}}$ is sharp when $|E|=|F|$. In this paper, we provide an improvement of this result in the unbalanced case, which is essentially sharp in odd dimensions. The most important tool in our proofs is an optimal $L^2$ restriction theorem for the sphere of zero radius.
@article{TM_2021_314_a12,
     author = {Daewoong Cheong and Doowon Koh and Thang Pham},
     title = {An {Asymmetric} {Bound} for {Sum} of {Distance} {Sets}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {290--300},
     publisher = {mathdoc},
     volume = {314},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a12/}
}
TY  - JOUR
AU  - Daewoong Cheong
AU  - Doowon Koh
AU  - Thang Pham
TI  - An Asymmetric Bound for Sum of Distance Sets
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 290
EP  - 300
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_314_a12/
LA  - ru
ID  - TM_2021_314_a12
ER  - 
%0 Journal Article
%A Daewoong Cheong
%A Doowon Koh
%A Thang Pham
%T An Asymmetric Bound for Sum of Distance Sets
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 290-300
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_314_a12/
%G ru
%F TM_2021_314_a12
Daewoong Cheong; Doowon Koh; Thang Pham. An Asymmetric Bound for Sum of Distance Sets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 290-300. http://geodesic.mathdoc.fr/item/TM_2021_314_a12/

[1] Hart D., Iosevich A., Koh D., Rudnev M., “Averages over hyperplanes, sum–product theory in vector spaces over finite fields and the Erdős–Falconer distance conjecture”, Trans. Amer. Math. Soc., 363:6 (2011), 3255–3275 | DOI | MR | Zbl

[2] Hegyvári N., Pálfy M., “Note on a result of Shparlinski and related results”, Acta arith., 193:2 (2020), 157–163 | DOI | MR | Zbl

[3] Hieu D.D., Vinh L.A., “On distance sets and product sets in vector spaces over finite rings”, Mich. Math. J., 62:4 (2013), 779–792 | DOI | MR | Zbl

[4] Iosevich A., Koh D., “Extension theorems for spheres in the finite field setting”, Forum math., 22:3 (2010), 457–483 | DOI | MR | Zbl

[5] Iosevich A., Koh D., Lee S., Pham T., Shen C.-Y., “On restriction estimates for the zero radius sphere over finite fields”, Can. J. Math., 73:3 (2021), 769–786 | DOI | MR | Zbl

[6] Iosevich A., Rudnev M., “Erdős distance problem in vector spaces over finite fields”, Trans. Amer. Math. Soc., 359:12 (2007), 6127–6142 | DOI | MR | Zbl

[7] Koh D., Pham T., Shen C.-Y., Vinh L.A., “A sharp exponent on sum of distance sets over finite fields”, Math. Z., 297:3–4 (2021), 1749–1765 | DOI | MR | Zbl

[8] Koh D., Pham T., Vinh L.A., “Extension theorems and a connection to the Erdős–Falconer distance problem over finite fields”, J. Funct. Anal., 281:8 (2021), 109137 ; arXiv: 1809.08699 [math.CA] | DOI | MR | Zbl

[9] Lidl R., Niederreiter H., Finite fields, Encycl. Math. Appl., 20, Cambridge Univ. Press, Cambridge, 1997 | MR

[10] Murphy B., Petridis G., “An example related to the Erdős–Falconer question over arbitrary finite fields”, Bull. Hell. Math. Soc., 63 (2019), 38–39 | MR | Zbl

[11] Murphy B., Petridis G., Pham T., Rudnev M., Stevens S., On the pinned distances problem over finite fields, E-print, 2020, arXiv: 2003.00510 [math.CO]

[12] Pham T., Erdős distinct distances problem and extensions over finite spaces, PhD thesis, EPFL, Lausanne, 2017

[13] Pham T., Vinh L.A., “Distribution of distances in positive characteristic”, Pac. J. Math., 309:2 (2020), 437–451 | DOI | MR | Zbl

[14] Shparlinski I.E., “On the additive energy of the distance set in finite fields”, Finite Fields Appl., 42 (2016), 187–199 | DOI | MR | Zbl