Effective Erd\H os--Wintner Theorems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 275-289.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical theorem of Erdős and Wintner furnishes a criterion for the existence of a limiting distribution for a real additive arithmetical function. This work is devoted to providing an effective estimate for the remainder term under the assumption that the conditions in the criterion are fulfilled. We also investigate the case of a conditional distribution.
Keywords: distribution of real additive functions, mean values of complex multiplicative function, Erdős–Wintner theorem, effective averages, number of prime factors.
@article{TM_2021_314_a11,
     author = {G\'erald Tenenbaum and Johann Verwee},
     title = {Effective {Erd\H} {os--Wintner} {Theorems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {275--289},
     publisher = {mathdoc},
     volume = {314},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a11/}
}
TY  - JOUR
AU  - Gérald Tenenbaum
AU  - Johann Verwee
TI  - Effective Erd\H os--Wintner Theorems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 275
EP  - 289
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_314_a11/
LA  - ru
ID  - TM_2021_314_a11
ER  - 
%0 Journal Article
%A Gérald Tenenbaum
%A Johann Verwee
%T Effective Erd\H os--Wintner Theorems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 275-289
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_314_a11/
%G ru
%F TM_2021_314_a11
Gérald Tenenbaum; Johann Verwee. Effective Erd\H os--Wintner Theorems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 275-289. http://geodesic.mathdoc.fr/item/TM_2021_314_a11/

[1] Baker R.C., Harman G., Pintz J., “The difference between consecutive primes. II”, Proc. London Math. Soc. Ser. 3, 83:3 (2001), 532–562 | DOI | MR | Zbl

[2] De la Bretèche R., Tenenbaum G., “Sur la concentration de certaines fonctions additives”, Math. Proc. Cambridge Philos. Soc., 152:1 (2012), 179–189, 191 | DOI | MR | Zbl

[3] Erdős P., “On the density of some sequences of numbers. I”, J. London Math. Soc., 10 (1935), 120–125 | MR

[4] Erdős P., “On the density of some sequences of numbers. II”, J. London Math. Soc., 12 (1937), 7–11 | MR

[5] Erdős P., “On the density of some sequences of numbers. III”, J. London Math. Soc., 13 (1938), 119–127 | MR

[6] Erdős P., Kátai I., “On the concentration of distribution of additive functions”, Acta sci. math., 41:3–4 (1979), 295–305 | MR | Zbl

[7] Erdős P., Wintner A., “Additive arithmetical functions and statistical independence”, Amer. J. Math., 61 (1939), 713–721 | DOI | MR

[8] Jessen B., Wintner A., “Distribution functions and the Riemann zeta function”, Trans. Amer. Math. Soc., 38 (1935), 48–88 | DOI | MR

[9] Koukoulopoulos D., “On the concentration of certain additive functions”, Acta arith., 162:3 (2014), 223–241 | DOI | MR | Zbl

[10] Lévy P., “Sur les séries dont les termes sont des variables éventuelles indépendantes”, Stud. math., 3 (1931), 119–155 | DOI

[11] Ruzsa I.Z., “On the concentration of additive functions”, Acta math. Acad. sci. Hung., 36:3–4 (1980), 215–232 | DOI | MR | Zbl

[12] Tenenbaum G., Introduction to analytic and probabilistic number theory, Grad. Stud. Math., 163, 3rd ed., Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[13] Tenenbaum G., “Moyennes effectives de fonctions multiplicatives complexes”, Ramanujan J., 44:3 (2017), 641–701 ; “Correction”, Ramanujan J., 53:1 (2020), 243–244 | DOI | MR | Zbl | DOI | MR | Zbl

[14] Tenenbaum G., Wu J., Théorie analytique et probabiliste des nombres: 307 exercices corrigés, Belin, Paris, 2014 | MR