Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_314_a11, author = {G\'erald Tenenbaum and Johann Verwee}, title = {Effective {Erd\H} {os--Wintner} {Theorems}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {275--289}, publisher = {mathdoc}, volume = {314}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a11/} }
Gérald Tenenbaum; Johann Verwee. Effective Erd\H os--Wintner Theorems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 275-289. http://geodesic.mathdoc.fr/item/TM_2021_314_a11/
[1] Baker R.C., Harman G., Pintz J., “The difference between consecutive primes. II”, Proc. London Math. Soc. Ser. 3, 83:3 (2001), 532–562 | DOI | MR | Zbl
[2] De la Bretèche R., Tenenbaum G., “Sur la concentration de certaines fonctions additives”, Math. Proc. Cambridge Philos. Soc., 152:1 (2012), 179–189, 191 | DOI | MR | Zbl
[3] Erdős P., “On the density of some sequences of numbers. I”, J. London Math. Soc., 10 (1935), 120–125 | MR
[4] Erdős P., “On the density of some sequences of numbers. II”, J. London Math. Soc., 12 (1937), 7–11 | MR
[5] Erdős P., “On the density of some sequences of numbers. III”, J. London Math. Soc., 13 (1938), 119–127 | MR
[6] Erdős P., Kátai I., “On the concentration of distribution of additive functions”, Acta sci. math., 41:3–4 (1979), 295–305 | MR | Zbl
[7] Erdős P., Wintner A., “Additive arithmetical functions and statistical independence”, Amer. J. Math., 61 (1939), 713–721 | DOI | MR
[8] Jessen B., Wintner A., “Distribution functions and the Riemann zeta function”, Trans. Amer. Math. Soc., 38 (1935), 48–88 | DOI | MR
[9] Koukoulopoulos D., “On the concentration of certain additive functions”, Acta arith., 162:3 (2014), 223–241 | DOI | MR | Zbl
[10] Lévy P., “Sur les séries dont les termes sont des variables éventuelles indépendantes”, Stud. math., 3 (1931), 119–155 | DOI
[11] Ruzsa I.Z., “On the concentration of additive functions”, Acta math. Acad. sci. Hung., 36:3–4 (1980), 215–232 | DOI | MR | Zbl
[12] Tenenbaum G., Introduction to analytic and probabilistic number theory, Grad. Stud. Math., 163, 3rd ed., Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl
[13] Tenenbaum G., “Moyennes effectives de fonctions multiplicatives complexes”, Ramanujan J., 44:3 (2017), 641–701 ; “Correction”, Ramanujan J., 53:1 (2020), 243–244 | DOI | MR | Zbl | DOI | MR | Zbl
[14] Tenenbaum G., Wu J., Théorie analytique et probabiliste des nombres: 307 exercices corrigés, Belin, Paris, 2014 | MR