Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_314_a10, author = {Athanasios Sourmelidis and J\"orn Steuding and Ade Irma Suriajaya}, title = {Dirichlet {Series} with {Periodic} {Coefficients} and {Their} {Value-Distribution} near the {Critical} {Line}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {248--274}, publisher = {mathdoc}, volume = {314}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a10/} }
TY - JOUR AU - Athanasios Sourmelidis AU - Jörn Steuding AU - Ade Irma Suriajaya TI - Dirichlet Series with Periodic Coefficients and Their Value-Distribution near the Critical Line JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 248 EP - 274 VL - 314 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_314_a10/ LA - ru ID - TM_2021_314_a10 ER -
%0 Journal Article %A Athanasios Sourmelidis %A Jörn Steuding %A Ade Irma Suriajaya %T Dirichlet Series with Periodic Coefficients and Their Value-Distribution near the Critical Line %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 248-274 %V 314 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2021_314_a10/ %G ru %F TM_2021_314_a10
Athanasios Sourmelidis; Jörn Steuding; Ade Irma Suriajaya. Dirichlet Series with Periodic Coefficients and Their Value-Distribution near the Critical Line. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 248-274. http://geodesic.mathdoc.fr/item/TM_2021_314_a10/
[1] Apostol T.M., “Dirichlet $L$-functions and primitive characters”, Proc. Amer. Math. Soc., 31 (1972), 384–386 | MR | Zbl
[2] Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, PhD Thesis, Indian Stat. Inst., Calcutta, 1981
[3] Burckel R.B., An introduction to classical complex analysis, v. 1, Birkhäuser, Basel, 1979 | MR | Zbl
[4] Christ T., Value-distribution of the Riemann zeta-function and related functions near the critical line, PhD Thesis, Würzburg Univ., Würzburg, 2014 | Zbl
[5] Elliott P.D.T.A., “The Riemann zeta function and coin tossing”, J. reine angew. Math., 254 (1972), 100–109 | MR | Zbl
[6] Gonek S.M., Analytic properties of zeta and $L$-functions, PhD Thesis, Univ. Michigan, Ann Arbor, 1979 | MR
[7] Gonek S.M., “Mean values of the Riemann zeta-function and its derivatives”, Invent. math., 75 (1984), 123–141 | DOI | MR | Zbl
[8] Gonek S.M., “An explicit formula of Landau and its applications to the theory of the zeta-function”, A tribute to Emil Grosswald: Number theory and related analysis, Contemp. Math., 143, Amer. Math. Soc., Providence, RI, 1993, 395–413 | DOI | MR | Zbl
[9] Gram J.-P., “Note sur les zéros de la fonction $\zeta (s)$ de Riemann”, Acta math., 27 (1903), 289–304 | DOI | MR | Zbl
[10] Hayman W.K., Meromorphic functions, Clarendon Press, Oxford, 1964 | MR | Zbl
[11] Hlawka E., “Über die Gleichverteilung gewisser Folgen, welche mit den Nullstellen der Zetafunktion zusammenhängen”, Österr. Akad. Wiss. Math.-naturw. Kl. S.-Ber. Abt. II, 184 (1975), 459–471 | MR
[12] Julia G., “Sur quelques propriétés nouvelles des fonctions entières ou méromorphes (premier mémoire)”, Ann. sci. Éc. norm. supér. Sér. 3, 36 (1919), 93–125 | MR
[13] Kaczorowski J., “Some remarks on the universality of periodic $L$-functions”, New directions in value-distribution theory of zeta and L-functions (Proc. Conf., Würzburg, 2008), ed. by R. Steuding, J. Steuding, Shaker Verlag, Aachen, 2009, 113–120 | MR | Zbl
[14] Kalpokas J., Korolev M.A., Steuding J., “Negative values of the Riemann zeta function on the critical line”, Mathematika, 59:2 (2013), 443–462 | DOI | MR | Zbl
[15] Kalpokas J., Steuding J., “On the value-distribution of the Riemann zeta-function on the critical line”, Moscow J. Comb. Number Theory, 1:1 (2011), 26–42 | MR | Zbl
[16] M. A. Korolev, “Gram's law in the theory of the Riemann zeta-function. Part 1”, Proc. Steklov Inst. Math., 292:Suppl. 2 (2016), 1–146 | MR | Zbl
[17] Korolev M., Laurinčikas A., “A new application of the Gram points”, Aequationes math., 93:5 (2019), 859–873 | DOI | MR | Zbl
[18] Kuipers L., Niederreiter H., Uniform distribution of sequences, Dover Publ., Mineola, NY, 2006 | MR
[19] Landau E., “Über die Nullstellen der Zetafunktion”, Math. Ann., 71 (1912), 548–564 | DOI | MR | Zbl
[20] Levinson N., “Almost all roots of $\zeta (s)=a$ are arbitrarily close to $\sigma =1/2$”, Proc. Natl. Acad. Sci. USA, 72:4 (1975), 1322–1324 | DOI | MR | Zbl
[21] Muth P., Steuding J., “Joint value-distribution of Dirichlet series associated with periodic arithmetical functions”, Funct. approx. Comment. math., 62:1 (2020), 63–79 | DOI | MR | Zbl
[22] Picard É., “Sur les fonctions analytiques uniformes dans le voisinage d'un point singulier essentiel”, C. r. Acad. sci. Paris, 89 (1879), 745–747
[23] Rademacher H.A., “Fourier analysis in number theory”, Collected papers of Hans Rademacher, v. II, MIT Press, Cambridge, 1974, 434–458 | MR
[24] Rane V.V., “On an approximate functional equation for Dirichlet $L$-series”, Math. Ann., 264 (1983), 137–145 | DOI | MR | Zbl
[25] Reich A., “Werteverteilung von Zetafunktionen”, Arch. Math., 34 (1980), 440–451 | DOI | MR | Zbl
[26] Sander J., Steuding J., “Joint universality for sums and products of Dirichlet $L$-functions”, Analysis (München), 26:3 (2006), 295–312 | DOI | MR | Zbl
[27] Schnee W., “Die Funktionalgleichung der Zetafunktion und der Dirichletschen Reihen mit periodischen Koeffizienten”, Math. Z., 31 (1930), 378–390 | DOI | MR
[28] Sourmelidis A., Universality and hypertranscendence of zeta-functions, PhD Thesis, Würzburg Univ., Würzburg, 2020
[29] Spira R., “An inequality for the Riemann zeta function”, Duke Math. J., 32 (1965), 247–250 | MR | Zbl
[30] Stein E.M., Shakarchi R., Complex analysis, Princeton Univ. Press, Princeton, NJ, 2003 | MR | Zbl
[31] Steuding J., “Dirichlet series associated to periodic arithmetic functions and the zeros of Dirichlet $L$-functions”, Analytic and probabilistic methods in number theory, Proc. 3rd Int. Conf. in honour of J. Kubilius (Palanga, 2001), ed. by A. Dubickas et al., TEV, Vilnius, 2002, 282–296 | MR | Zbl
[32] Steuding J., Value-distribution of $L$-functions, Lect. Notes Math., 1877, Springer, Berlin, 2007 | MR | Zbl
[33] Steuding J., “The roots of the equation $\zeta (s)=a$ are uniformly distributed modulo one”, Analytic and probabilistic methods in number theory, Proc. 5th Int. Conf. in honour of J. Kubilius (Palanga, 2011), ed. by A. Laurinčikas et al., TEV, Vilnius, 2012, 243–249 | MR | Zbl
[34] Steuding J., “One hundred years uniform distribution modulo one and recent applications to Riemann's zeta-function”, Topics in mathematical analysis and applications, Springer Optim. Appl., 94, ed. by Th.M. Rassias, L. Tóth, Springer, Cham, 2014, 659–698 | MR | Zbl
[35] Steuding J., Suriajaya A.I., “Value-distribution of the Riemann zeta-function along its Julia lines”, Comput. Methods Funct. Theory, 20:3–4 (2020), 389–401 | DOI | MR | Zbl
[36] Titchmarsh E.C., The theory of functions, 2nd ed., Oxford Univ. Press, Oxford, 1939 | MR | Zbl
[37] Titchmarsh E.C., The theory of the Riemann zeta-function, 2nd ed. rev., ed. by D. R. Heath-Brown, Clarendon Press, Oxford, 1986 | MR | Zbl
[38] Vinogradov I.M., “Novaya otsenka odnoi summy, soderzhaschei prostye chisla”, Mat. sb., 2:5 (1937), 783–792
[39] Vinogradov I.M., “Novaya otsenka funktsii $\zeta (1+it)$”, Izv. AN SSSR. Ser. mat., 22:2 (1958), 161–164 | MR | Zbl
[40] S. M. Voronin, “Theorem on the ‘universality’ of the Riemann zeta-function”, Math. USSR, Izv., 9:3 (1975), 443–453 | DOI | MR
[41] Voronin S., “O funktsionalnoi nezavisimosti $L$-funktsii Dirikhle”, Acta arith., 27 (1975), 493–503 | DOI | Zbl
[42] A. A. Karatsuba and S. M. Voronin, The Riemann Zeta-Function, De Gruyter Expo. Math., 5, W. de Gruyter, Berlin, 1992 | MR | MR | Zbl
[43] Weyl H., “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77 (1916), 313–352 | DOI | MR | Zbl