Cycles of Arbitrary Length in Distance Graphs on $\mathbb F_q^d$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 31-48
Voir la notice de l'article provenant de la source Math-Net.Ru
For $E \subset \mathbb F_q^d$, $d \ge 2$, where $\mathbb F_q$ is the finite field with $q$ elements, we consider the distance graph $\mathcal G^{\text {dist}}_t(E)$, $t\neq 0$, where the vertices are the elements of $E$, and two vertices $x$, $y$ are connected by an edge if $\|x-y\| \equiv (x_1-y_1)^2+\dots +(x_d-y_d)^2=t$. We prove that if $|E| \ge C_k q^{\frac {d+2}{2}}$, then $\mathcal G^{\text {dist}}_t(E)$ contains a statistically correct number of cycles of length $k$. We are also going to consider the dot-product graph $\mathcal G^{\text {prod}}_t(E)$, $t\neq 0$, where the vertices are the elements of $E$, and two vertices $x$, $y$ are connected by an edge if $x\cdot y \equiv x_1y_1+\dots +x_dy_d=t$. We obtain similar results in this case using more sophisticated methods necessitated by the fact that the function $x\cdot y$ is not translation invariant. The exponent $\frac {d+2}{2}$ is improved for sufficiently long cycles.
@article{TM_2021_314_a1,
author = {A. Iosevich and G. Jardine and B. McDonald},
title = {Cycles of {Arbitrary} {Length} in {Distance} {Graphs} on $\mathbb F_q^d$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {31--48},
publisher = {mathdoc},
volume = {314},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a1/}
}
TY - JOUR AU - A. Iosevich AU - G. Jardine AU - B. McDonald TI - Cycles of Arbitrary Length in Distance Graphs on $\mathbb F_q^d$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 31 EP - 48 VL - 314 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_314_a1/ LA - ru ID - TM_2021_314_a1 ER -
A. Iosevich; G. Jardine; B. McDonald. Cycles of Arbitrary Length in Distance Graphs on $\mathbb F_q^d$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 31-48. http://geodesic.mathdoc.fr/item/TM_2021_314_a1/